Bedrock 嵌入
您可以将 AWS Bedrock 与 Qdrant 一起使用。AWS Bedrock 支持多种嵌入模型提供商。
您需要提供以下 AWS 账户信息
- 区域
- 访问密钥 ID
- 秘密密钥
要配置您的凭证,请查阅以下 AWS 文章:如何创建 AWS 访问密钥。
使用以下代码示例,您可以使用 Titan Embeddings G1 - Text 模型 生成嵌入,该模型生成大小为 1536 的句子嵌入。
# Install the required dependencies
# pip install boto3 qdrant_client
import json
import boto3
from qdrant_client import QdrantClient, models
session = boto3.Session()
bedrock_client = session.client(
"bedrock-runtime",
region_name="<YOUR_AWS_REGION>",
aws_access_key_id="<YOUR_AWS_ACCESS_KEY_ID>",
aws_secret_access_key="<YOUR_AWS_SECRET_KEY>",
)
qdrant_client = QdrantClient(url="http://localhost:6333")
qdrant_client.create_collection(
"{collection_name}",
vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE),
)
body = json.dumps({"inputText": "Some text to generate embeddings for"})
response = bedrock_client.invoke_model(
body=body,
modelId="amazon.titan-embed-text-v1",
accept="application/json",
contentType="application/json",
)
response_body = json.loads(response.get("body").read())
qdrant_client.upsert(
"{collection_name}",
points=[models.PointStruct(id=1, vector=response_body["embedding"])],
)
// Install the required dependencies
// npm install @aws-sdk/client-bedrock-runtime @qdrant/js-client-rest
import {
BedrockRuntimeClient,
InvokeModelCommand,
} from "@aws-sdk/client-bedrock-runtime";
import { QdrantClient } from '@qdrant/js-client-rest';
const main = async () => {
const bedrockClient = new BedrockRuntimeClient({
region: "<YOUR_AWS_REGION>",
credentials: {
accessKeyId: "<YOUR_AWS_ACCESS_KEY_ID>",,
secretAccessKey: "<YOUR_AWS_SECRET_KEY>",
},
});
const qdrantClient = new QdrantClient({ url: 'http://localhost:6333' });
await qdrantClient.createCollection("{collection_name}", {
vectors: {
size: 1536,
distance: 'Cosine',
}
});
const response = await bedrockClient.send(
new InvokeModelCommand({
modelId: "amazon.titan-embed-text-v1",
body: JSON.stringify({
inputText: "Some text to generate embeddings for",
}),
contentType: "application/json",
accept: "application/json",
})
);
const body = new TextDecoder().decode(response.body);
await qdrantClient.upsert("{collection_name}", {
points: [
{
id: 1,
vector: JSON.parse(body).embedding,
},
],
});
}
main();