Voyage AI

Qdrant 支持使用 Voyage AI 嵌入。支持的模型列表可以在此处找到。

您可以从 Voyage AI 控制面板生成 API 密钥来验证请求。

设置 Qdrant 和 Voyage 客户端

from qdrant_client import QdrantClient
import voyageai

VOYAGE_API_KEY = "<YOUR_VOYAGEAI_API_KEY>"

qclient = QdrantClient(":memory:")
vclient = voyageai.Client(api_key=VOYAGE_API_KEY)

texts = [
    "Qdrant is the best vector search engine!",
    "Loved by Enterprises and everyone building for low latency, high performance, and scale.",
]
import {QdrantClient} from '@qdrant/js-client-rest';

const VOYAGEAI_BASE_URL = "https://api.voyageai.com/v1/embeddings"
const VOYAGEAI_API_KEY = "<YOUR_VOYAGEAI_API_KEY>"

const client = new QdrantClient({ url: 'http://localhost:6333' });

const headers = {
    "Authorization": "Bearer " + VOYAGEAI_API_KEY,
    "Content-Type": "application/json"
}

const texts = [
    "Qdrant is the best vector search engine!",
    "Loved by Enterprises and everyone building for low latency, high performance, and scale.",
]

以下示例展示了如何使用voyage-large-2 模型嵌入文档,该模型生成大小为 1536 的句子嵌入。

嵌入文档

response = vclient.embed(texts, model="voyage-large-2", input_type="document")
let body = {
    "input": texts,
    "model": "voyage-large-2",
    "input_type": "document",
}

let response = await fetch(VOYAGEAI_BASE_URL, {
    method: "POST",
    body: JSON.stringify(body),
    headers
});

let response_body = await response.json();

将模型输出转换为 Qdrant 点

from qdrant_client.models import PointStruct

points = [
    PointStruct(
        id=idx,
        vector=embedding,
        payload={"text": text},
    )
    for idx, (embedding, text) in enumerate(zip(response.embeddings, texts))
]
let points = response_body.data.map((data, i) => {
    return {
        id: i,
        vector: data.embedding,
        payload: {
            text: texts[i]
        }
    }
});

创建一个集合来插入文档

from qdrant_client.models import VectorParams, Distance

COLLECTION_NAME = "example_collection"

qclient.create_collection(
    COLLECTION_NAME,
    vectors_config=VectorParams(
        size=1536,
        distance=Distance.COSINE,
    ),
)
qclient.upsert(COLLECTION_NAME, points)
const COLLECTION_NAME = "example_collection"

await client.createCollection(COLLECTION_NAME, {
    vectors: {
        size: 1536,
        distance: 'Cosine',
    }
});

await client.upsert(COLLECTION_NAME, {
    wait: true,
    points
});

使用 Qdrant 搜索文档

添加文档后,您可以搜索最相关的文档。

response = vclient.embed(
    ["What is the best to use for vector search scaling?"],
    model="voyage-large-2",
    input_type="query",
)

qclient.search(
    collection_name=COLLECTION_NAME,
    query_vector=response.embeddings[0],
)
body = {
    "input": ["What is the best to use for vector search scaling?"],
    "model": "voyage-large-2",
    "input_type": "query",
};

response = await fetch(VOYAGEAI_BASE_URL, {
    method: "POST",
    body: JSON.stringify(body),
    headers
});

response_body = await response.json();

await client.search(COLLECTION_NAME, {
    vector: response_body.data[0].embedding,
});
此页面有用吗?

感谢您的反馈! 🙏

听到这个消息很抱歉。😔 您可以在 GitHub 上编辑此页面,或创建 GitHub issue。