VoltAgent

VoltAgent 是一个基于 TypeScript 的开源框架,旨在开发支持模块化工具集成、LLM 协调和适应性多智能体架构的 AI 智能体。该框架包括一个类似于 n8n 的集成可观察性仪表板,可实现对智能体操作的可视化监控、动作跟踪和简化的调试功能。

安装

创建一个集成 Qdrant 的新 VoltAgent 项目

npm create voltagent-app@latest -- --example with-qdrant
cd with-qdrant

此命令生成一个完全配置的项目,结合了 VoltAgent 和 Qdrant,包括示例数据和两种不同的智能体实现模式。

安装依赖项

npm install

环境设置

创建包含配置的 .env 文件

# Qdrant URL
# docker run -p 6333:6333 qdrant/qdrant
QDRANT_URL=https://:6333

# Qdrant API key (Optional)
QDRANT_API_KEY=your-qdrant-api-key-here

# OpenAI API key for embeddings and LLM
OPENAI_API_KEY=your-openai-api-key-here

启动 VoltAgent 应用程序

npm run dev

请参阅此处示例的源代码:这里

工作原理

以下部分将演示此示例的构建方式,并提供有关如何根据您的需求进行调整的指导。

创建 Qdrant 检索器

创建 src/retriever/index.ts

import { BaseRetriever, type BaseMessage, type RetrieveOptions } from "@voltagent/core";
import { QdrantClient } from "@qdrant/js-client-rest";

// Initialize Qdrant client
const qdrant = new QdrantClient({
  url: process.env.QDRANT_URL || "https://:6333",
  apiKey: process.env.QDRANT_API_KEY,
});

const collectionName = "voltagent-knowledge-base";

关键组件解释:

  • Qdrant 客户端:连接到 Qdrant 的 REST API
  • 集合 (Collection):Qdrant 中用于存储向量的命名容器
  • 开源与云:可本地使用或作为托管服务使用

初始化集合和示例数据

提供的示例处理 Qdrant 集合的自动创建和数据初始化

async function initializeCollection() {
  try {
    // Check if collection exists
    let exists = false;
    try {
      await qdrant.getCollection(collectionName);
      exists = true;
      console.log(`📋 Collection "${collectionName}" already exists`);
    } catch (error) {
      console.log(`📋 Creating new collection "${collectionName}"...`);
    }

    // Create collection if it doesn't exist
    if (!exists) {
      await qdrant.createCollection(collectionName, {
        vectors: { size: 1536, distance: "Cosine" },
      });
      console.log(`✅ Collection "${collectionName}" created successfully`);
    }

    // Check if we need to populate with sample data
    const stats = await qdrant.count(collectionName);
    if (stats.count === 0) {
      console.log("📚 Populating collection with sample documents...");
      // Generate embeddings for sample documents using OpenAI
      const OpenAI = await import("openai");
      const openai = new OpenAI.default({
        apiKey: process.env.OPENAI_API_KEY!,
      });
      const points = [];
      for (const record of sampleRecords) {
        try {
          const embeddingResponse = await openai.embeddings.create({
            model: "text-embedding-3-small",
            input: record.payload.text,
          });
          points.push({
            id: record.id,
            vector: embeddingResponse.data[0].embedding,
            payload: record.payload,
          });
        } catch (error) {
          console.error(`Error generating embedding for ${record.id}:`, error);
        }
      }
      if (points.length > 0) {
        await qdrant.upsert(collectionName, { points });
        console.log(`✅ Successfully upserted ${points.length} documents to collection`);
      }
    } else {
      console.log(`📊 Collection already contains ${stats.count} documents`);
    }
  } catch (error) {
    console.error("Error initializing Qdrant collection:", error);
  }
}

作用:

  • 创建具有余弦相似度的 Qdrant 集合
  • 使用 OpenAI API 生成嵌入
  • 将嵌入和有效负载添加到 Qdrant

实现检索器类

实现用于向量搜索功能的主要检索器类

// Retriever function
async function retrieveDocuments(query: string, topK = 3) {
  try {
    // Generate embedding for the query
    const OpenAI = await import("openai");
    const openai = new OpenAI.default({
      apiKey: process.env.OPENAI_API_KEY!,
    });
    const embeddingResponse = await openai.embeddings.create({
      model: "text-embedding-3-small",
      input: query,
    });
    const queryVector = embeddingResponse.data[0].embedding;
    // Perform search in Qdrant
    const searchResults = (
      await qdrant.query(collectionName, {
        query: queryVector,
        limit: topK,
        with_payload: true,
      })
    ).points;
    // Format results
    return (
      searchResults.map((match: any) => ({
        content: match.payload?.text || "",
        metadata: match.payload || {},
        score: match.score || 0,
        id: match.id,
      })) || []
    );
  } catch (error) {
    console.error("Error retrieving documents from Qdrant:", error);
    return [];
  }
}

/**
 * Qdrant-based retriever implementation for VoltAgent
 */
export class QdrantRetriever extends BaseRetriever {
  /**
   * Retrieve documents from Qdrant based on semantic similarity
   * @param input - The input to use for retrieval (string or BaseMessage[])
   * @param options - Configuration and context for the retrieval
   * @returns Promise resolving to a formatted context string
   */
  async retrieve(input: string | BaseMessage[], options: RetrieveOptions): Promise<string> {
    // Convert input to searchable string
    let searchText = "";
    if (typeof input === "string") {
      searchText = input;
    } else if (Array.isArray(input) && input.length > 0) {
      const lastMessage = input[input.length - 1];
      if (Array.isArray(lastMessage.content)) {
        const textParts = lastMessage.content
          .filter((part: any) => part.type === "text")
          .map((part: any) => part.text);
        searchText = textParts.join(" ");
      } else {
        searchText = lastMessage.content as string;
      }
    }
    // Perform semantic search using Qdrant
    const results = await retrieveDocuments(searchText, 3);
    // Add references to userContext if available
    if (options.userContext && results.length > 0) {
      const references = results.map((doc: any, index: number) => ({
        id: doc.id,
        title: doc.metadata.topic || `Document ${index + 1}`,
        source: "Qdrant Knowledge Base",
        score: doc.score,
        category: doc.metadata.category,
      }));
      options.userContext.set("references", references);
    }
    // Return the concatenated content for the LLM
    if (results.length === 0) {
      return "No relevant documents found in the knowledge base.";
    }
    return results
      .map(
        (doc: any, index: number) =>
          `Document ${index + 1} (ID: ${doc.id}, Score: ${doc.score.toFixed(4)}, Category: ${doc.metadata.category}):\n${doc.content}`
      )
      .join("\n\n---\n\n");
  }
}

// Create retriever instance
export const retriever = new QdrantRetriever();

创建你的智能体

src/index.ts 中配置具有各种检索策略的智能体

import { openai } from "@ai-sdk/openai";
import { Agent, VoltAgent } from "@voltagent/core";
import { createPinoLogger } from "@voltagent/logger";
import { VercelAIProvider } from "@voltagent/vercel-ai";

import { retriever } from "./retriever/index.js";

// Agent 1: Using retriever directly
const agentWithRetriever = new Agent({
  name: "Assistant with Retriever",
  description:
    "A helpful assistant that can retrieve information from the Qdrant knowledge base using semantic search to provide better answers. I automatically search for relevant information when needed.",
  llm: new VercelAIProvider(),
  model: openai("gpt-4o-mini"),
  retriever: retriever,
});

// Agent 2: Using retriever as tool
const agentWithTools = new Agent({
  name: "Assistant with Tools",
  description:
    "A helpful assistant that can search the Qdrant knowledge base using tools. The agent will decide when to search for information based on user questions.",
  llm: new VercelAIProvider(),
  model: openai("gpt-4o-mini"),
  tools: [retriever.tool],
});

// Create logger
const logger = createPinoLogger({
  name: "with-qdrant",
  level: "info",
});

new VoltAgent({
  agents: {
    agentWithRetriever,
    agentWithTools,
  },
  logger,
});

延伸阅读

此页面有用吗?

感谢您的反馈!🙏

很抱歉听到这个消息。😔 您可以在 GitHub 上编辑此页面,或创建一个 GitHub 问题。