推理
推理是使用机器学习模型从文本、图像或其他数据类型创建向量嵌入的过程。虽然您可以在客户端创建嵌入,但您也可以让 Qdrant 在存储或查询数据时生成它们。

使用 Qdrant 生成嵌入有几个优点:
- 无需外部管道或单独的模型服务器。
- 使用单一统一的 API,而不是每个模型提供商使用不同的 API。
- 没有外部网络调用,最大程度地减少了延迟或数据传输开销。
根据您想要使用的模型,推理可以执行:
- 在客户端,使用 FastEmbed 库
- 由 Qdrant 集群(仅支持 BM25 模型)
- 在 Qdrant Cloud 中,使用 云推理(适用于 Qdrant Managed Cloud 上的集群)
- 外部(OpenAI、Cohere 和 Jina AI 提供的模型;适用于 Qdrant Managed Cloud 上的集群)
推理 API
您可以在可以使用常规向量的任何 API 中使用推理。您可以使用特殊的 *推理对象* 来代替向量。
Document对象,用于文本推理// Document { // Text input text: "Your text", // Name of the model, to do inference with model: "<the-model-to-use>", // Extra parameters for the model, Optional options: {} }Image对象,用于图像推理// Image { // Image input image: "<url>", // Or base64 encoded image // Name of the model, to do inference with model: "<the-model-to-use>", // Extra parameters for the model, Optional options: {} }Object对象,保留用于其他类型的输入,未来可能会实现。
Qdrant API 支持在可以使用常规向量的所有地方使用这些推理对象。例如:
POST /collections/<your-collection>/points/query
{
"query": {
"nearest": [0.12, 0.34, 0.56, 0.78, ...]
}
}
可以替换为
POST /collections/<your-collection>/points/query
{
"query": {
"nearest": {
"text": "My Query Text",
"model": "<the-model-to-use>"
}
}
}
在这种情况下,Qdrant 使用配置的嵌入模型自动从推理对象创建向量,然后使用该向量执行搜索查询。所有这些都发生在低延迟网络中。
服务器端推理:BM25
BM25 (Best Matching 25) 是一种用于文本搜索的排名函数。BM25 使用表示文档的稀疏向量,其中每个维度对应一个单词。Qdrant 可以直接在服务器上从输入文本生成这些稀疏嵌入。
在 upsert 点时,提供文本和 qdrant/bm25 嵌入模型。
PUT /collections/{collection_name}/points
{
"points": [
{
"id": 1,
"vector": {
"my-bm25-vector": {
"text": "Recipe for baking chocolate chip cookies",
"model": "qdrant/bm25"
}
}
}
]
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.upsert(
collection_name="{collection_name}",
points=[
models.PointStruct(
id=1,
vector={
"my-bm25-vector": models.Document(
text="Recipe for baking chocolate chip cookies",
model="Qdrant/bm25",
)
},
)
],
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.upsert("{collection_name}", {
points: [
{
id: 1,
vector: {
'my-bm25-vector': {
text: 'Recipe for baking chocolate chip cookies',
model: 'Qdrant/bm25',
},
},
},
],
});
use qdrant_client::{
Payload, Qdrant, QdrantError,
qdrant::{Document, PointStruct, UpsertPointsBuilder},
};
let client = Qdrant::from_url("<your-qdrant-url>").build()?;
client
.upsert_points(UpsertPointsBuilder::new("{collection_name}",
vec![
PointStruct::new(1,
HashMap::from([("my-bm25-vector".to_string(),
Document {
text: "Recipe for baking chocolate chip cookies".into(),
model: "qdrant/bm25".into(),
..Default::default()
}.into())]),
Payload::default())
]))
.await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorFactory.vector;
import static io.qdrant.client.VectorsFactory.namedVectors;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.upsertAsync(
"{collection_name}",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(
namedVectors(
Map.of(
"my-bm25-vector",
vector(
Document.newBuilder()
.setModel("qdrant/bm25")
.setText("Recipe for baking chocolate chip cookies")
.build()))))
.build()))
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io", port: 6334, https: true, apiKey: "<your-api-key>");
await client.UpsertAsync(
collectionName: "{collection_name}",
points: new List<PointStruct>
{
new()
{
Id = 1,
Vectors = new Dictionary<string, Vector>
{
["my-bm25-vector"] = new Document()
{
Model = "qdrant/bm25",
Text = "Recipe for baking chocolate chip cookies",
},
},
},
}
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Upsert(ctx, &qdrant.UpsertPoints{
CollectionName: "{collection_name}",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(uint64(1)),
Vectors: qdrant.NewVectorsMap(map[string]*qdrant.Vector{
"my-bm25-vector": qdrant.NewVectorDocument(&qdrant.Document{
Model: "qdrant/bm25",
Text: "Recipe for baking chocolate chip cookies",
}),
}),
},
},
})
Qdrant 使用该模型生成嵌入,并使用生成的向量存储点。检索点会显示生成的嵌入。
....
"my-bm25-vector": {
"indices": [
112174620,
177304315,
662344706,
771857363,
1617337648
],
"values": [
1.6697302,
1.6697302,
1.6697302,
1.6697302,
1.6697302
]
}
....
]
同样,您可以通过提供要查询的文本和嵌入模型,在查询时使用推理。
POST /collections/{collection_name}/points/query
{
"query": {
"text": "How to bake cookies?",
"model": "qdrant/bm25"
},
"using": "my-bm25-vector"
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.query_points(
collection_name="{collection_name}",
query=models.Document(
text="How to bake cookies?",
model="Qdrant/bm25",
),
using="my-bm25-vector",
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.query("{collection_name}", {
query: {
text: 'How to bake cookies?',
model: 'qdrant/bm25',
},
using: 'my-bm25-vector',
});
use qdrant_client::{
Qdrant, QdrantError,
qdrant::{Document, Query, QueryPointsBuilder},
};
let client = Qdrant::from_url("<your-qdrant-url>").build().unwrap();
client
.query(
QueryPointsBuilder::new("{collection_name}")
.query(Query::new_nearest(Document {
text: "How to bake cookies?".into(),
model: "qdrant/bm25".into(),
..Default::default()
}))
.using("my-bm25-vector")
.build(),
)
.await?;
import static io.qdrant.client.QueryFactory.nearest;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points;
import io.qdrant.client.grpc.Points.Document;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.queryAsync(
Points.QueryPoints.newBuilder()
.setCollectionName("{collection_name}")
.setQuery(
nearest(
Document.newBuilder()
.setModel("qdrant/bm25")
.setText("How to bake cookies?")
.build()))
.setUsing("my-bm25-vector")
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io",
port: 6334,
https: true,
apiKey: "<your-api-key>"
);
await client.QueryAsync(
collectionName: "{collection_name}",
query: new Document() { Model = "qdrant/bm25", Text = "How to bake cookies?" },
usingVector: "my-bm25-vector"
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Query(ctx, &qdrant.QueryPoints{
CollectionName: "{collection_name}",
Query: qdrant.NewQueryNearest(
qdrant.NewVectorInputDocument(&qdrant.Document{
Model: "qdrant/bm25",
Text: "How to bake cookies?",
}),
),
Using: qdrant.PtrOf("my-bm25-vector"),
})
Qdrant 云推理
Qdrant Managed Cloud 上的集群可以访问 托管在 Qdrant Cloud 上 的嵌入模型。有关可用模型的列表,请访问 Qdrant Cloud Console 中集群详细信息页面的“推理”选项卡。您还可以在此处为集群启用云推理(如果尚未启用)。
在使用云托管的嵌入模型之前,请确保您的集合已配置为具有正确维度的向量。Qdrant Cloud Console 中集群详细信息页面的“推理”选项卡列出了每个支持的嵌入模型的维度。
文本推理
让我们考虑一个使用云推理和生成密集向量的文本模型的示例。此示例创建一个点,并使用包含 Document 推理对象的简单搜索查询。
# Insert new points with cloud-side inference
PUT /collections/<your-collection>/points?wait=true
{
"points": [
{
"id": 1,
"payload": { "topic": "cooking", "type": "dessert" },
"vector": {
"text": "Recipe for baking chocolate chip cookies",
"model": "<the-model-to-use>"
}
}
]
}
# Search in the collection using cloud-side inference
POST /collections/<your-collection>/points/query
{
"query": {
"text": "How to bake cookies?",
"model": "<the-model-to-use>"
}
}
# Create a new vector
curl -X PUT "https://xyz-example.qdrant.io:6333/collections/<your-collection>/points?wait=true" \
-H "Content-Type: application/json" \
-H "api-key: <paste-your-api-key-here>" \
-d '{
"points": [
{
"id": 1,
"payload": { "topic": "cooking", "type": "dessert" },
"vector": {
"text": "Recipe for baking chocolate chip cookies",
"model": "<the-model-to-use>"
}
}
]
}'
# Perform a search query
curl -X POST "https://xyz-example.qdrant.io:6333/collections/<your-collection>/points/query" \
-H "Content-Type: application/json" \
-H "api-key: <paste-your-api-key-here>" \
-d '{
"query": {
"text": "How to bake cookies?",
"model": "<the-model-to-use>"
}
}'
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, Document
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<paste-your-api-key-here>",
# IMPORTANT
# If not enabled, inference will be performed locally
cloud_inference=True,
)
points = [
PointStruct(
id=1,
payload={"topic": "cooking", "type": "dessert"},
vector=Document(
text="Recipe for baking chocolate chip cookies",
model="<the-model-to-use>"
)
)
]
client.upsert(collection_name="<your-collection>", points=points)
result = client.query_points(
collection_name="<your-collection>",
query=Document(
text="How to bake cookies?",
model="<the-model-to-use>"
)
)
print(result)
import {QdrantClient} from "@qdrant/js-client-rest";
const client = new QdrantClient({
url: 'https://xyz-example.qdrant.io:6333',
apiKey: '<paste-your-api-key-here>',
});
const points = [
{
id: 1,
payload: { topic: "cooking", type: "dessert" },
vector: {
text: "Recipe for baking chocolate chip cookies",
model: "<the-model-to-use>"
}
}
];
await client.upsert("<your-collection>", { wait: true, points });
const result = await client.query(
"<your-collection>",
{
query: {
text: "How to bake cookies?",
model: "<the-model-to-use>"
},
}
)
console.log(result);
use qdrant_client::qdrant::Query;
use qdrant_client::qdrant::QueryPointsBuilder;
use qdrant_client::Payload;
use qdrant_client::Qdrant;
use qdrant_client::qdrant::{Document};
use qdrant_client::qdrant::{PointStruct, UpsertPointsBuilder};
#[tokio::main]
async fn main() {
let client = Qdrant::from_url("https://xyz-example.qdrant.io:6334")
.api_key("<paste-your-api-key-here>")
.build()
.unwrap();
let points = vec![
PointStruct::new(
1,
Document::new(
"Recipe for baking chocolate chip cookies",
"<the-model-to-use>"
),
Payload::try_from(serde_json::json!(
{"topic": "cooking", "type": "dessert"}
)).unwrap(),
)
];
let upsert_request = UpsertPointsBuilder::new(
"<your-collection>",
points
).wait(true);
let _ = client.upsert_points(upsert_request).await;
let query_document = Document::new(
"How to bake cookies?",
"<the-model-to-use>"
);
let query_request = QueryPointsBuilder::new("<your-collection>")
.query(Query::new_nearest(query_document));
let result = client.query(query_request).await.unwrap();
println!("Result: {:?}", result);
}
package org.example;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;
import io.qdrant.client.grpc.Points;
import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutionException;
public class Main {
public static void main(String[] args)
throws ExecutionException, InterruptedException {
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<paste-your-api-key-here>")
.build());
client
.upsertAsync(
"<your-collection>",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(
vectors(
Document.newBuilder()
.setText("Recipe for baking chocolate chip cookies")
.setModel("<the-model-to-use>")
.build()))
.putAllPayload(Map.of("topic", value("cooking"), "type", value("dessert")))
.build()))
.get();
List <Points.ScoredPoint> points =
client
.queryAsync(
Points.QueryPoints.newBuilder()
.setCollectionName("<your-collection>")
.setQuery(
nearest(
Document.newBuilder()
.setText("How to bake cookies?")
.setModel("<the-model-to-use>")
.build()))
.build())
.get();
System.out.printf(points.toString());
}
}
using Qdrant.Client;
using Qdrant.Client.Grpc;
using Value = Qdrant.Client.Grpc.Value;
var client = new QdrantClient(
host: "xyz-example.qdrant.io",
port: 6334,
https: true,
apiKey: "<paste-your-api-key-here>"
);
await client.UpsertAsync(
collectionName: "<your-collection>",
points: new List <PointStruct> {
new() {
Id = 1,
Vectors = new Document() {
Text = "Recipe for baking chocolate chip cookies",
Model = "<the-model-to-use>",
},
Payload = {
["topic"] = "cooking",
["type"] = "dessert"
},
},
}
);
var points = await client.QueryAsync(
collectionName: "<your-collection>",
query: new Document() {
Text = "How to bake cookies?",
Model = "<the-model-to-use>"
}
);
foreach(var point in points) {
Console.WriteLine(point);
}
package main
import (
"context"
"log"
"time"
"github.com/qdrant/go-client/qdrant"
)
func main() {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
if err != nil {
log.Fatalf("did not connect: %v", err)
}
defer client.Close()
_, err = client.Upsert(ctx, &qdrant.UpsertPoints{
CollectionName: "<your-collection>",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(1),
Vectors: qdrant.NewVectorsDocument(&qdrant.Document{
Text: "Recipe for baking chocolate chip cookies",
Model: "<the-model-to-use>",
}),
Payload: qdrant.NewValueMap(map[string]any{
"topic": "cooking",
"type": "dessert",
}),
},
},
})
if err != nil {
log.Fatalf("error creating point: %v", err)
}
points, err := client.Query(ctx, &qdrant.QueryPoints{
CollectionName: "<your-collection>",
Query: qdrant.NewQueryNearest(
qdrant.NewVectorInputDocument(&qdrant.Document{
Text: "How to bake cookies?",
Model: "<the-model-to-use>",
}),
),
})
log.Printf("List of points: %s", points)
}
特定于每个集群和模型的用法示例也可以在 Qdrant Cloud Console 中集群详细信息页面的“推理”选项卡中找到。
请注意,每个模型都有一个上下文窗口,即模型在单个请求中可以处理的最大 token 数。如果输入文本超出上下文窗口,它将被截断以适应限制。上下文窗口大小显示在集群详细信息页面的“推理”选项卡中。
对于密集向量模型,您还需要确保集合中配置的向量大小与模型的输出大小匹配。如果向量大小不匹配,则 upsert 将失败并显示错误。
图像推理
这是使用云推理和图像模型的另一个示例。此示例使用 CLIP 模型对图像进行编码,然后使用文本查询搜索该图像。
由于 CLIP 模型是多模态的,我们可以在同一个向量字段上使用图像和文本输入。
# Insert new points with cloud-side inference
PUT /collections/<your-collection>/points?wait=true
{
"points": [
{
"id": 1,
"vector": {
"image": "https://qdrant.org.cn/example.png",
"model": "qdrant/clip-vit-b-32-vision"
},
"payload": {
"title": "Example Image"
}
}
]
}
# Search in the collection using cloud-side inference
POST /collections/<your-collection>/points/query
{
"query": {
"text": "Mission to Mars",
"model": "qdrant/clip-vit-b-32-text"
}
}
# Create a new vector
curl -X PUT "https://xyz-example.qdrant.io:6333/collections/<your-collection>/points?wait=true" \
-H "Content-Type: application/json" \
-H "api-key: <paste-your-api-key-here>" \
-d '{
"points": [
{
"id": 1,
"vector": {
"image": "https://qdrant.org.cn/example.png",
"model": "qdrant/clip-vit-b-32-vision"
},
"payload": {
"title": "Example Image"
}
}
]
}'
# Perform a search query
curl -X POST "https://xyz-example.qdrant.io:6333/collections/<your-collection>/points/query" \
-H "Content-Type: application/json" \
-H "api-key: <paste-your-api-key-here>" \
-d '{
"query": {
"text": "Mission to Mars",
"model": "qdrant/clip-vit-b-32-text"
}
}'
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, Image, Document
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<paste-your-api-key-here>",
# IMPORTANT
# If not enabled, inference will be performed locally
cloud_inference=True,
)
points = [
PointStruct(
id=1,
vector=Image(
image="https://qdrant.org.cn/example.png",
model="qdrant/clip-vit-b-32-vision"
),
payload={
"title": "Example Image"
}
)
]
client.upsert(collection_name="<your-collection>", points=points)
result = client.query_points(
collection_name="<your-collection>",
query=Document(
text="Mission to Mars",
model="qdrant/clip-vit-b-32-text"
)
)
print(result)
import {QdrantClient} from "@qdrant/js-client-rest";
const client = new QdrantClient({
url: 'https://xyz-example.qdrant.io:6333',
apiKey: '<paste-your-api-key-here>',
});
const points = [
{
id: 1,
vector: {
image: "https://qdrant.org.cn/example.png",
model: "qdrant/clip-vit-b-32-vision"
},
payload: {
title: "Example Image"
}
}
];
await client.upsert("<your-collection>", { wait: true, points });
const result = await client.query(
"<your-collection>",
{
query: {
text: "Mission to Mars",
model: "qdrant/clip-vit-b-32-text"
},
}
)
console.log(result);
use qdrant_client::qdrant::Query;
use qdrant_client::qdrant::QueryPointsBuilder;
use qdrant_client::Payload;
use qdrant_client::Qdrant;
use qdrant_client::qdrant::{Document, Image};
use qdrant_client::qdrant::{PointStruct, UpsertPointsBuilder};
#[tokio::main]
async fn main() {
let client = Qdrant::from_url("https://xyz-example.qdrant.io:6334")
.api_key("<paste-your-api-key-here>")
.build()
.unwrap();
let points = vec![
PointStruct::new(
1,
Image::new_from_url(
"https://qdrant.org.cn/example.png",
"qdrant/clip-vit-b-32-vision"
),
Payload::try_from(serde_json::json!({
"title": "Example Image"
})).unwrap(),
)
];
let upsert_request = UpsertPointsBuilder::new(
"<your-collection>",
points
).wait(true);
let _ = client.upsert_points(upsert_request).await;
let query_document = Document::new(
"Mission to Mars",
"qdrant/clip-vit-b-32-text"
);
let query_request = QueryPointsBuilder::new("<your-collection>")
.query(Query::new_nearest(query_document));
let result = client.query(query_request).await.unwrap();
println!("Result: {:?}", result);
}
package org.example;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;
import io.qdrant.client.grpc.Points;
import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutionException;
public class Main {
public static void main(String[] args)
throws ExecutionException, InterruptedException {
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<paste-your-api-key-here>")
.build());
client
.upsertAsync(
"<your-collection>",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(
vectors(
Image.newBuilder()
.setImage(value("https://qdrant.org.cn/example.png"))
.setModel("qdrant/clip-vit-b-32-vision")
.build()))
.putAllPayload(Map.of("title", value("Example Image")))
.build()))
.get();
List <Points.ScoredPoint> points =
client
.queryAsync(
Points.QueryPoints.newBuilder()
.setCollectionName("<your-collection>")
.setQuery(
nearest(
Document.newBuilder()
.setText("Mission to Mars")
.setModel("qdrant/clip-vit-b-32-text")
.build()))
.build())
.get();
System.out.printf(points.toString());
}
}
using Qdrant.Client;
using Qdrant.Client.Grpc;
using Value = Qdrant.Client.Grpc.Value;
var client = new QdrantClient(
host: "xyz-example.qdrant.io",
port: 6334,
https: true,
apiKey: "<paste-your-api-key-here>"
);
await client.UpsertAsync(
collectionName: "<your-collection>",
points: new List <PointStruct> {
new() {
Id = 1,
Vectors = new Image() {
Image_ = "https://qdrant.org.cn/example.png",
Model = "qdrant/clip-vit-b-32-vision",
},
Payload = {
["title"] = "Example Image"
},
},
}
);
var points = await client.QueryAsync(
collectionName: "<your-collection>",
query: new Document() {
Text = "Mission to Mars",
Model = "qdrant/clip-vit-b-32-text"
}
);
foreach(var point in points) {
Console.WriteLine(point);
}
package main
import (
"context"
"log"
"time"
"github.com/qdrant/go-client/qdrant"
)
func main() {
ctx, cancel := context.WithTimeout(context.Background(), time.Second)
defer cancel()
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
if err != nil {
log.Fatalf("did not connect: %v", err)
}
defer client.Close()
_, err = client.Upsert(ctx, &qdrant.UpsertPoints{
CollectionName: "<your-collection>",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(1),
Vectors: qdrant.NewVectorsImage(&qdrant.Image{
Model: "qdrant/clip-vit-b-32-vision",
Image: qdrant.NewValueString("https://qdrant.org.cn/example.png"),
}),
Payload: qdrant.NewValueMap(map[string]any{
"title": "Example image",
}),
},
},
})
if err != nil {
log.Fatalf("error creating point: %v", err)
}
points, err := client.Query(ctx, &qdrant.QueryPoints{
CollectionName: "<your-collection>",
Query: qdrant.NewQueryNearest(
qdrant.NewVectorInputDocument(&qdrant.Document{
Text: "Mission to Mars",
Model: "qdrant/clip-vit-b-32-text",
}),
),
})
log.Printf("List of points: %s", points)
}
Qdrant Cloud 推理服务器将使用提供的 URL 下载图像。或者,您可以将图像作为 base64 编码的字符串提供。每个模型对可以使用的文件大小和扩展名都有限制。有关详细信息,请参阅模型卡。
本地推理兼容性
Python SDK 提供了一个独特的功能:它通过相同的接口支持 本地 和云推理。
您可以通过在初始化 QdrantClient 时设置 cloud_inference 标志,轻松地在本地推理和云推理之间切换。例如:
client = QdrantClient(
url="https://your-cluster.qdrant.io",
api_key="<your-api-key>",
cloud_inference=True, # Set to False to use local inference
)
这种灵活性允许您在本地或持续集成 (CI) 环境中开发和测试您的应用程序,而无需访问云推理资源。
- 当
cloud_inference设置为False时,推理使用fastembed在本地执行。 - 当设置为
True时,推理请求由 Qdrant Cloud 处理。
外部嵌入模型提供商
Qdrant Cloud 可以充当三个外部嵌入模型提供商的 API 代理:
- OpenAI
- Cohere
- Jina AI
这使您可以通过 Qdrant API 访问这些提供商提供的任何嵌入模型。
要使用外部提供商的嵌入模型,您需要该提供商的 API 密钥。例如,要访问 OpenAI 模型,您需要一个 OpenAI API 密钥。Qdrant 不存储或缓存您的 API 密钥;它们必须随每个推理请求提供。
使用外部嵌入模型时,请确保您的集合已配置为具有正确维度的向量。有关输出维度的详细信息,请参阅模型的文档。
OpenAI
当您在模型名称前加上 openai/ 时,嵌入请求会自动路由到 OpenAI 嵌入 API。
例如,在摄取数据时使用 OpenAI 的 text-embedding-3-large 模型,在模型名称前加上 openai/ 并在 options 对象中提供您的 OpenAI API 密钥。此示例使用 OpenAI 特定的 API dimensions 参数将维度减少到 512。
PUT /collections/{collection_name}/points?wait=true
{
"points": [
{
"id": 1,
"vector": {
"text": "Recipe for baking chocolate chip cookies",
"model": "openai/text-embedding-3-large",
"options": {
"openai-api-key": "<YOUR_OPENAI_API_KEY>",
"dimensions": 512
}
}
}
]
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.upsert(
collection_name="{collection_name}",
points=[
models.PointStruct(
id=1,
vector=models.Document(
text="Recipe for baking chocolate chip cookies",
model="openai/text-embedding-3-large",
options={
"openai-api-key": "<your_openai_api_key>",
"dimensions": 512
}
)
)
]
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.upsert("{collection_name}", {
points: [
{
id: 1,
vector: {
text: 'Recipe for baking chocolate chip cookies',
model: 'openai/text-embedding-3-large',
options: {
'openai-api-key': '<your_openai_api_key>',
dimensions: 512,
},
},
},
],
});
use qdrant_client::{
Payload, Qdrant, QdrantError,
qdrant::{Document, PointStruct, UpsertPointsBuilder},
};
use std::collections::HashMap;
let client = Qdrant::from_url("<your-qdrant-url>").build()?;
let mut options = HashMap::new();
options.insert("openai-api-key".to_string(), "<YOUR_OPENAI_API_KEY>".into());
options.insert("dimensions".to_string(), 512.into());
client
.upsert_points(UpsertPointsBuilder::new("{collection_name}",
vec![
PointStruct::new(1,
Document {
text: "Recipe for baking chocolate chip cookies".into(),
model: "openai/text-embedding-3-large".into(),
options,
},
Payload::default())
]).wait(true))
.await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.upsertAsync(
"{collection_name}",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(
vectors(
Document.newBuilder()
.setModel("openai/text-embedding-3-large")
.setText("Recipe for baking chocolate chip cookies")
.putAllOptions(
Map.of(
"openai-api-key",
value("<YOUR_OPENAI_API_KEY>"),
"dimensions",
value(512)))
.build()))
.build()))
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io", port: 6334, https: true, apiKey: "<your-api-key>");
await client.UpsertAsync(
collectionName: "{collection_name}",
points: new List<PointStruct>
{
new()
{
Id = 1,
Vectors = new Document()
{
Model = "openai/text-embedding-3-large",
Text = "Recipe for baking chocolate chip cookies",
Options = { ["openai-api-key"] = "<YOUR_OPENAI_API_KEY>", ["dimensions"] = 512 },
},
},
}
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Upsert(ctx, &qdrant.UpsertPoints{
CollectionName: "{collection_name}",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(uint64(1)),
Vectors: qdrant.NewVectorsDocument(&qdrant.Document{
Model: "openai/text-embedding-3-large",
Text: "Recipe for baking chocolate chip cookies",
Options: qdrant.NewValueMap(map[string]any{
"openai-api-key": "<YOUR_OPENAI_API_KEY>",
"dimensions": 512,
}),
}),
},
},
})
在查询时,您可以通过在模型名称前加上 openai/ 并在 options 对象中提供您的 OpenAI API 密钥来使用相同的模型。此示例再次使用 OpenAI 特定的 API dimensions 参数将维度减少到 512。
POST /collections/{collection_name}/points/query
{
"query": {
"text": "How to bake cookies?",
"model": "openai/text-embedding-3-large",
"options": {
"openai-api-key": "<YOUR_OPENAI_API_KEY>",
"dimensions": 512
}
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.query_points(
collection_name="{collection_name}",
query=models.Document(
text="How to bake cookies?",
model="openai/text-embedding-3-large",
options={
"openai-api-key": "<your_openai_api_key>",
"dimensions": 512
}
)
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.query("{collection_name}", {
query: {
text: 'How to bake cookies?',
model: 'openai/text-embedding-3-large',
options: {
'openai-api-key': '<your_openai_api_key>',
dimensions: 512,
},
},
});
use qdrant_client::{
Qdrant, QdrantError,
qdrant::{Document, Query, QueryPointsBuilder, Value},
};
use std::collections::HashMap;
let client = Qdrant::from_url("<your-qdrant-url>").build().unwrap();
let mut options = HashMap::<String, Value>::new();
options.insert("openai-api-key".to_string(), "<YOUR_OPENAI_API_KEY>".into());
options.insert("dimensions".to_string(), 512.into());
client
.query(
QueryPointsBuilder::new("{collection_name}")
.query(Query::new_nearest(Document {
text: "How to bake cookies?".into(),
model: "openai/text-embedding-3-large".into(),
options,
}))
.build(),
)
.await?;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import java.util.Map;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.queryAsync(
Points.QueryPoints.newBuilder()
.setCollectionName("{collection_name}")
.setQuery(
nearest(
Document.newBuilder()
.setModel("openai/text-embedding-3-large")
.setText("How to bake cookies?")
.putAllOptions(
Map.of(
"openai-api-key",
value("<YOUR_OPENAI_API_KEY>"),
"dimensions",
value(512)))
.build()))
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io",
port: 6334,
https: true,
apiKey: "<your-api-key>"
);
await client.QueryAsync(
collectionName: "{collection_name}",
query: new Document()
{
Model = "openai/text-embedding-3-large",
Text = "How to bake cookies?",
Options = { ["openai-api-key"] = "<YOUR_OPENAI_API_KEY>", ["dimensions"] = 512 },
}
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Query(ctx, &qdrant.QueryPoints{
CollectionName: "{collection_name}",
Query: qdrant.NewQueryNearest(
qdrant.NewVectorInputDocument(&qdrant.Document{
Model: "openai/text-embedding-3-large",
Text: "How to bake cookies?",
Options: qdrant.NewValueMap(map[string]any{
"openai-api-key": "<YOUR_OPENAI_API_KEY>",
"dimensions": 512,
}),
}),
),
})
请注意,由于 Qdrant 不存储或缓存您的 OpenAI API 密钥,因此您需要为每个推理请求提供它。
Cohere
当您在模型名称前加上 cohere/ 时,嵌入请求会自动路由到 Cohere Embed API。
例如,在摄取数据时使用 Cohere 的多模态 embed-v4.0 模型,在模型名称前加上 cohere/ 并在 options 对象中提供您的 Cohere API 密钥。此示例使用 Cohere 特定的 API output_dimension 参数将维度减少到 512。
PUT /collections/{collection_name}/points?wait=true
{
"points": [
{
"id": 1,
"vector": {
"image": "",
"model": "cohere/embed-v4.0",
"options": {
"cohere-api-key": "<YOUR_COHERE_API_KEY>",
"output_dimension": 512
}
}
}
]
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.upsert(
collection_name="{collection_name}",
points=[
models.PointStruct(
id=1,
vector=models.Document(
text="a green square",
model="cohere/embed-v4.0",
options={
"cohere-api-key": "<your_cohere_api_key>",
"output_dimension": 512
}
)
)
]
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.upsert("{collection_name}", {
points: [
{
id: 1,
vector: {
text: 'a green square',
model: 'cohere/embed-v4.0',
options: {
'cohere-api-key': '<your_cohere_api_key>',
output_dimension: 512,
},
},
},
],
});
use qdrant_client::{
Payload, Qdrant, QdrantError,
qdrant::{Document, PointStruct, UpsertPointsBuilder},
};
use std::collections::HashMap;
let client = Qdrant::from_url("<your-qdrant-url>").build()?;
let mut options = HashMap::new();
options.insert("cohere-api-key".to_string(), "<YOUR_COHERE_API_KEY>".into());
options.insert("output_dimension".to_string(), 512.into());
client
.upsert_points(UpsertPointsBuilder::new("{collection_name}",
vec![
PointStruct::new(1,
Document {
text: "Recipe for baking chocolate chip cookies requires flour, sugar, eggs, and chocolate chips.".into(),
model: "openai/text-embedding-3-small".into(),
options,
},
Payload::default())
]).wait(true))
.await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.upsertAsync(
"{collection_name}",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(
vectors(
Image.newBuilder()
.setModel("cohere/embed-v4.0")
.setImage(
value(
""))
.putAllOptions(
Map.of(
"cohere-api-key",
value("<YOUR_COHERE_API_KEY>"),
"output_dimension",
value(512)))
.build()))
.build()))
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io", port: 6334, https: true, apiKey: "<your-api-key>");
await client.UpsertAsync(
collectionName: "{collection_name}",
points: new List<PointStruct>
{
new()
{
Id = 1,
Vectors = new Image()
{
Model = "cohere/embed-v4.0",
Image_ =
"",
Options =
{
["cohere-api-key"] = "<YOUR_COHERE_API_KEY>",
["output_dimension"] = 512,
},
},
},
}
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Upsert(ctx, &qdrant.UpsertPoints{
CollectionName: "{collection_name}",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(uint64(1)),
Vectors: qdrant.NewVectorsImage(&qdrant.Image{
Model: "cohere/embed-v4.0",
Image: qdrant.NewValueString(""),
Options: qdrant.NewValueMap(map[string]any{
"cohere-api-key": "<YOUR_COHERE_API_KEY>",
"output_dimension": 512,
}),
}),
},
},
})
请注意,Cohere embed-v4.0 模型不支持将图像作为 URL 传递。您需要提供 base64 编码的图像作为数据 URL。
在查询时,您可以通过在模型名称前加上 cohere/ 并在 options 对象中提供您的 Cohere API 密钥来使用相同的模型。此示例再次使用 Cohere 特定的 API output_dimension 参数将维度减少到 512。
POST /collections/{collection_name}/points/query
{
"query": {
"text": "a green square",
"model": "cohere/embed-v4.0",
"options": {
"cohere-api-key": "<YOUR_COHERE_API_KEY>",
"output_dimension": 512
}
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.query_points(
collection_name="{collection_name}",
query=models.Document(
text="a green square",
model="cohere/embed-v4.0",
options={
"cohere-api-key": "<your_cohere_api_key>",
"output_dimension": 512
}
)
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.query("{collection_name}", {
query: {
text: 'a green square',
model: 'cohere/embed-v4.0',
options: {
'cohere-api-key': '<your_cohere_api_key>',
output_dimension: 512,
},
},
});
use qdrant_client::{
Qdrant, QdrantError,
qdrant::{Document, Query, QueryPointsBuilder, Value},
};
use std::collections::HashMap;
let client = Qdrant::from_url("https://:6333").build().unwrap();
let mut options = HashMap::<String, Value>::new();
options.insert("cohere-api-key".to_string(), "<YOUR_COHERE_API_KEY>".into());
options.insert("output_dimension".to_string(), 512.into());
client
.query(
QueryPointsBuilder::new("{collection_name}")
.query(Query::new_nearest(Document {
text: "a green square".into(),
model: "cohere/embed-v4.0".into(),
options,
}))
.build(),
)
.await?;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import java.util.Map;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.queryAsync(
Points.QueryPoints.newBuilder()
.setCollectionName("{collection_name}")
.setQuery(
nearest(
Document.newBuilder()
.setModel("cohere/embed-v4.0")
.setText("a green square")
.putAllOptions(
Map.of(
"cohere-api-key",
value("<YOUR_COHERE_API_KEY>"),
"output_dimension",
value(512)))
.build()))
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io",
port: 6334,
https: true,
apiKey: "<your-api-key>"
);
await client.QueryAsync(
collectionName: "{collection_name}",
query: new Document()
{
Model = "cohere/embed-v4.0",
Text = "a green square",
Options = { ["cohere-api-key"] = "<YOUR_COHERE_API_KEY>", ["output_dimension"] = 512 },
}
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Query(ctx, &qdrant.QueryPoints{
CollectionName: "{collection_name}",
Query: qdrant.NewQueryNearest(
qdrant.NewVectorInputDocument(&qdrant.Document{
Text: "a green square",
Model: "cohere/embed-v4.0",
Options: qdrant.NewValueMap(map[string]any{
"cohere-api-key": "<YOUR_COHERE_API_KEY>",
"output_dimension": 512,
}),
}),
),
})
请注意,由于 Qdrant 不存储或缓存您的 Cohere API 密钥,因此您需要为每个推理请求提供它。
Jina AI
当您在模型名称前加上 jinaai/ 时,嵌入请求会自动路由到 Jina AI 嵌入 API。
例如,在摄取数据时使用 Jina AI 的多模态 jina-clip-v2 模型,在模型名称前加上 jinaai/ 并在 options 对象中提供您的 Jina AI API 密钥。此示例使用 Jina AI 特定的 API dimensions 参数将维度减少到 512。
PUT /collections/{collection_name}/points?wait=true
{
"points": [
{
"id": 1,
"vector": {
"image": "https://qdrant.org.cn/example.png",
"model": "jinaai/jina-clip-v2",
"options": {
"jina-api-key": "<YOUR_JINAAI_API_KEY>",
"dimensions": 512
}
}
}
]
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.upsert(
collection_name="{collection_name}",
points=[
models.PointStruct(
id=1,
vector=models.Image(
image="https://qdrant.org.cn/example.png",
model="jinaai/jina-clip-v2",
options={
"jina-api-key": "<your_jinaai_api_key>",
"dimensions": 512
}
)
)
]
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.upsert("{collection_name}", {
points: [
{
id: 1,
vector: {
image: 'https://qdrant.org.cn/example.png',
model: 'jinaai/jina-clip-v2',
options: {
'jina-api-key': '<your_jinaai_api_key>',
dimensions: 512,
},
},
},
],
});
use qdrant_client::{
Payload, Qdrant, QdrantError,
qdrant::{Image, PointStruct, UpsertPointsBuilder},
};
use std::collections::HashMap;
let client = Qdrant::from_url("<your-qdrant-url>").build()?;
let mut options = HashMap::new();
options.insert("jina-api-key".to_string(), "<YOUR_JINAAI_API_KEY>".into());
options.insert("dimensions".to_string(), 512.into());
client
.upsert_points(UpsertPointsBuilder::new("{collection_name}",
vec![
PointStruct::new(1,
Image {
image: Some("https://qdrant.org.cn/example.png".into()),
model: "jinaai/jina-clip-v2".into(),
options,
},
Payload::default())
]).wait(true))
.await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.upsertAsync(
"{collection_name}",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(
vectors(
Image.newBuilder()
.setModel("jinaai/jina-clip-v2")
.setImage(value("https://qdrant.org.cn/example.png"))
.putAllOptions(
Map.of(
"jina-api-key",
value("<YOUR_JINAAI_API_KEY>"),
"dimensions",
value(512)))
.build()))
.build()))
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io",
port: 6334,
https: true,
apiKey: "<your-api-key>"
);
await client.UpsertAsync(
collectionName: "{collection_name}",
points: new List<PointStruct>
{
new()
{
Id = 1,
Vectors = new Document()
{
Model = "jinaai/jina-clip-v2",
Text = "Mission to Mars",
Options = { ["jina-api-key"] = "<YOUR_JINAAI_API_KEY>", ["dimensions"] = 512 },
},
},
}
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Upsert(ctx, &qdrant.UpsertPoints{
CollectionName: "{collection_name}",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(uint64(1)),
Vectors: qdrant.NewVectorsImage(&qdrant.Image{
Model: "jinaai/jina-clip-v2",
Image: qdrant.NewValueString("https://qdrant.org.cn/example.png"),
Options: qdrant.NewValueMap(map[string]any{
"jina-api-key": "<YOUR_JINAAI_API_KEY>",
"dimensions": 512,
}),
}),
},
},
})
在查询时,您可以通过在模型名称前加上 jinaai/ 并在 options 对象中提供您的 Jina AI API 密钥来使用相同的模型。此示例再次使用 Jina AI 特定的 API dimensions 参数将维度减少到 512。
POST /collections/{collection_name}/points/query
{
"query": {
"text": "Mission to Mars",
"model": "jinaai/jina-clip-v2",
"options": {
"jina-api-key": "<YOUR_JINAAI_API_KEY>",
"dimensions": 512
}
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.query_points(
collection_name="{collection_name}",
query=models.Document(
text="Mission to Mars",
model="jinaai/jina-clip-v2",
options={
"jina-api-key": "<your_jinaai_api_key>",
"dimensions": 512
}
)
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.query("{collection_name}", {
query: {
text: 'Mission to Mars',
model: 'jinaai/jina-clip-v2',
options: {
'jina-api-key': '<your_jinaai_api_key>',
dimensions: 512,
},
},
});
use qdrant_client::{
Qdrant, QdrantError,
qdrant::{Document, Query, QueryPointsBuilder, Value},
};
use std::collections::HashMap;
let client = Qdrant::from_url("<your-qdrant-url>").build().unwrap();
let mut options = HashMap::<String, Value>::new();
options.insert("jina-api-key".to_string(), "<YOUR_JINAAI_API_KEY>".into());
options.insert("dimensions".to_string(), 512.into());
client
.query(
QueryPointsBuilder::new("{collection_name}")
.query(Query::new_nearest(Document {
text: "Mission to Mars".into(),
model: "jinaai/jina-clip-v2".into(),
options,
}))
.build(),
)
.await?;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import java.util.Map;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.queryAsync(
Points.QueryPoints.newBuilder()
.setCollectionName("{collection_name}")
.setQuery(
nearest(
Document.newBuilder()
.setModel("jinaai/jina-clip-v2")
.setText("Mission to Mars")
.putAllOptions(
Map.of(
"jina-api-key",
value("<YOUR_JINAAI_API_KEY>"),
"dimensions",
value(512)))
.build()))
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io",
port: 6334,
https: true,
apiKey: "<your-api-key>"
);
await client.QueryAsync(
collectionName: "{collection_name}",
query: new Document()
{
Model = "jinaai/jina-clip-v2",
Text = "Mission to Mars",
Options = { ["jina-api-key"] = "<YOUR_JINAAI_API_KEY>", ["dimensions"] = 512 },
}
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Query(ctx, &qdrant.QueryPoints{
CollectionName: "{collection_name}",
Query: qdrant.NewQueryNearest(
qdrant.NewVectorInputDocument(&qdrant.Document{
Text: "Mission to Mars",
Model: "jinaai/jina-clip-v2",
Options: qdrant.NewValueMap(map[string]any{
"jina-api-key": "<YOUR_JINAAI_API_KEY>",
"dimensions": 512,
}),
}),
),
})
请注意,由于 Qdrant 不存储或缓存您的 Jina AI API 密钥,因此您需要为每个推理请求提供它。
多次推理操作
您可以在单个请求中运行多个推理操作,即使模型托管在不同位置。此示例为一个点生成三个不同的命名向量:使用 Jina AI 托管的 jina-clip-v2 的图像嵌入,使用 Qdrant Cloud 托管的 all-minilm-l6-v2 的文本嵌入,以及使用 Qdrant 集群在本地执行的 bm25 模型的 BM25 嵌入。
PUT /collections/{collection_name}/points?wait=true
{
"points": [
{
"id": 1,
"vector": {
"image": {
"image": "https://qdrant.org.cn/example.png",
"model": "jinaai/jina-clip-v2",
"options": {
"jina-api-key": "<YOUR_JINAAI_API_KEY>",
"dimensions": 512
}
},
"text": {
"text": "Mars, the red planet",
"model": "sentence-transformers/all-minilm-l6-v2"
},
"bm25": {
"text": "Mars, the red planet",
"model": "qdrant/bm25"
}
}
}
]
}
from qdrant_client import QdrantClient, models
client = QdrantClient(
url="https://xyz-example.qdrant.io:6333",
api_key="<your-api-key>",
cloud_inference=True
)
client.upsert(
collection_name="{collection_name}",
points=[
models.PointStruct(
id=1,
vector={
"image": models.Image(
image="https://qdrant.org.cn/example.png",
model="jinaai/jina-clip-v2",
options={
"jina-api-key": "<your_jinaai_api_key>",
"dimensions": 512
},
),
"text": models.Document(
text="Mars, the red planet",
model="sentence-transformers/all-minilm-l6-v2",
),
"bm25": models.Document(
text="Mars, the red planet",
model="Qdrant/bm25",
),
},
)
],
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.upsert("{collection_name}", {
points: [
{
id: 1,
vector: {
image: {
image: 'https://qdrant.org.cn/example.png',
model: 'jinaai/jina-clip-v2',
options: {
'jina-api-key': '<your_jinaai_api_key>',
dimensions: 512,
},
},
text: {
text: 'Mars, the red planet',
model: 'sentence-transformers/all-minilm-l6-v2',
},
bm25: {
text: 'Mars, the red planet',
model: 'Qdrant/bm25',
},
},
},
],
});
use qdrant_client::{
Payload, Qdrant, QdrantError,
qdrant::{Document, PointStruct, UpsertPointsBuilder, Vectors},
};
use std::collections::HashMap;
let client = Qdrant::from_url("<your-qdrant-url>").build()?;
let mut jina_options = HashMap::new();
jina_options.insert("jina-api-key".to_string(), "<YOUR_JINAAI_API_KEY>".into());
jina_options.insert("dimensions".to_string(), 512.into());
client
.upsert_points(
UpsertPointsBuilder::new(
"{collection_name}",
vec![PointStruct::new(
1,
NamedVectors::default()
.add_vector(
"image",
Image {
image: Some("https://qdrant.org.cn/example.png".into()),
model: "jinaai/jina-clip-v2".into(),
options: jina_options,
},
)
.add_vector(
"text",
Document {
text: "Mars, the red planet".into(),
model: "sentence-transformers/all-minilm-l6-v2".into(),
..Default::default()
},
)
.add_vector(
"bm25",
Document {
text: "How to bake cookies?".into(),
model: "qdrant/bm25".into(),
..Default::default()
},
),
Payload::default(),
)],
)
.wait(true),
)
.await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorFactory.vector;
import static io.qdrant.client.VectorsFactory.namedVectors;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
QdrantClient client =
new QdrantClient(
QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
.withApiKey("<your-api-key")
.build());
client
.upsertAsync(
"{collection_name}",
List.of(
PointStruct.newBuilder()
.setId(id(1))
.setVectors(
namedVectors(
Map.of(
"image",
vector(
Image.newBuilder()
.setModel("jinaai/jina-clip-v2")
.setImage(value("https://qdrant.org.cn/example.png"))
.putAllOptions(
Map.of(
"jina-api-key",
value("<YOUR_JINAAI_API_KEY>"),
"dimensions",
value(512)))
.build()),
"text",
vector(
Document.newBuilder()
.setModel("sentence-transformers/all-minilm-l6-v2")
.setText("Mars, the red planet")
.build()),
"bm25",
vector(
Document.newBuilder()
.setModel("qdrant/bm25")
.setText("Mars, the red planet")
.build()))))
.build()))
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient(
host: "xyz-example.qdrant.io", port: 6334, https: true, apiKey: "<your-api-key>");
await client.UpsertAsync(
collectionName: "{collection_name}",
points: new List<PointStruct>
{
new()
{
Id = 1,
Vectors = new Dictionary<string, Vector>
{
["image"] = new Image()
{
Model = "jinaai/jina-clip-v2",
Image_ = "https://qdrant.org.cn/example.png",
Options = { ["jina-api-key"] = "<YOUR_JINAAI_API_KEY>", ["dimensions"] = 512 },
},
["text"] = new Document()
{
Model = "sentence-transformers/all-minilm-l6-v2",
Text = "Mars, the red planet",
},
["bm25"] = new Document() { Model = "qdrant/bm25", Text = "Mars, the red planet" },
},
},
}
);
import (
"context"
"time"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "xyz-example.qdrant.io",
Port: 6334,
APIKey: "<paste-your-api-key-here>",
UseTLS: true,
})
client.Upsert(ctx, &qdrant.UpsertPoints{
CollectionName: "{collection_name}",
Points: []*qdrant.PointStruct{
{
Id: qdrant.NewIDNum(uint64(1)),
Vectors: qdrant.NewVectorsMap(map[string]*qdrant.Vector{
"image": qdrant.NewVectorImage(&qdrant.Image{
Model: "jinaai/jina-clip-v2",
Image: qdrant.NewValueString("https://qdrant.org.cn/example.png"),
Options: qdrant.NewValueMap(map[string]any{
"jina-api-key": "<YOUR_JINAAI_API_KEY>",
"dimensions": 512,
}),
}),
"text": qdrant.NewVectorDocument(&qdrant.Document{
Model: "sentence-transformers/all-minilm-l6-v2",
Text: "Mars, the red planet",
}),
"my-bm25-vector": qdrant.NewVectorDocument(&qdrant.Document{
Model: "qdrant/bm25",
Text: "Recipe for baking chocolate chip cookies",
}),
}),
},
},
})