推理

推理是使用机器学习模型从文本、图像或其他数据类型创建向量嵌入的过程。虽然您可以在客户端创建嵌入,但您也可以让 Qdrant 在存储或查询数据时生成它们。

Inference.

使用 Qdrant 生成嵌入有几个优点:

  • 无需外部管道或单独的模型服务器。
  • 使用单一统一的 API,而不是每个模型提供商使用不同的 API。
  • 没有外部网络调用,最大程度地减少了延迟或数据传输开销。

根据您想要使用的模型,推理可以执行:

  • 在客户端,使用 FastEmbed
  • 由 Qdrant 集群(仅支持 BM25 模型)
  • 在 Qdrant Cloud 中,使用 云推理(适用于 Qdrant Managed Cloud 上的集群)
  • 外部(OpenAI、Cohere 和 Jina AI 提供的模型;适用于 Qdrant Managed Cloud 上的集群)

推理 API

您可以在可以使用常规向量的任何 API 中使用推理。您可以使用特殊的 *推理对象* 来代替向量。

  • Document 对象,用于文本推理

    // Document
    {
        // Text input
        text: "Your text",
        // Name of the model, to do inference with
        model: "<the-model-to-use>",
        // Extra parameters for the model, Optional
        options: {}
    }
    
  • Image 对象,用于图像推理

    // Image
    {
        // Image input
        image: "<url>", // Or base64 encoded image
        // Name of the model, to do inference with
        model: "<the-model-to-use>",
        // Extra parameters for the model, Optional
        options: {}
    }
    
  • Object 对象,保留用于其他类型的输入,未来可能会实现。

Qdrant API 支持在可以使用常规向量的所有地方使用这些推理对象。例如:

POST /collections/<your-collection>/points/query
{
  "query": {
    "nearest": [0.12, 0.34, 0.56, 0.78, ...]
  }
}

可以替换为

POST /collections/<your-collection>/points/query
{
  "query": {
    "nearest": {
      "text": "My Query Text",
      "model": "<the-model-to-use>"
    }
  }
}

在这种情况下,Qdrant 使用配置的嵌入模型自动从推理对象创建向量,然后使用该向量执行搜索查询。所有这些都发生在低延迟网络中。

服务器端推理:BM25

BM25 (Best Matching 25) 是一种用于文本搜索的排名函数。BM25 使用表示文档的稀疏向量,其中每个维度对应一个单词。Qdrant 可以直接在服务器上从输入文本生成这些稀疏嵌入。

在 upsert 点时,提供文本和 qdrant/bm25 嵌入模型。

PUT /collections/{collection_name}/points
{
  "points": [
    {
      "id": 1,
      "vector": {
        "my-bm25-vector": {
          "text": "Recipe for baking chocolate chip cookies",
          "model": "qdrant/bm25"
        }
      }
    }
  ]
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333", 
    api_key="<your-api-key>", 
    cloud_inference=True
)

client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            vector={
                "my-bm25-vector": models.Document(
                    text="Recipe for baking chocolate chip cookies",
                    model="Qdrant/bm25",
                )
            },
        )
    ],
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.upsert("{collection_name}", {
    points: [
        {
            id: 1,
            vector: {
                'my-bm25-vector': {
                    text: 'Recipe for baking chocolate chip cookies',
                    model: 'Qdrant/bm25',
                },
            },
        },
    ],
});
use qdrant_client::{
    Payload, Qdrant, QdrantError,
    qdrant::{Document, PointStruct, UpsertPointsBuilder},
};

let client = Qdrant::from_url("<your-qdrant-url>").build()?;

client
    .upsert_points(UpsertPointsBuilder::new("{collection_name}",
        vec![
            PointStruct::new(1,
                HashMap::from([("my-bm25-vector".to_string(),
                    Document {
                      text: "Recipe for baking chocolate chip cookies".into(),
                      model: "qdrant/bm25".into(),
                      ..Default::default()
                      }.into())]),
                Payload::default())
            ]))
        .await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorFactory.vector;
import static io.qdrant.client.VectorsFactory.namedVectors;


import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(
                    namedVectors(
                        Map.of(
                            "my-bm25-vector",
                            vector(
                                Document.newBuilder()
                                    .setModel("qdrant/bm25")
                                    .setText("Recipe for baking chocolate chip cookies")
                                    .build()))))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
host: "xyz-example.qdrant.io", port: 6334, https: true, apiKey: "<your-api-key>");

await client.UpsertAsync(
    collectionName: "{collection_name}",
    points: new List<PointStruct>
    {
        new()
        {
            Id = 1,
            Vectors = new Dictionary<string, Vector>
            {
                ["my-bm25-vector"] = new Document()
                {
                    Model = "qdrant/bm25",
                    Text = "Recipe for baking chocolate chip cookies",
                },
            },
        },
    }
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
    Host:   "xyz-example.qdrant.io",
    Port:   6334,
    APIKey: "<paste-your-api-key-here>",
    UseTLS: true,
})

client.Upsert(ctx, &qdrant.UpsertPoints{
	CollectionName: "{collection_name}",
	Points: []*qdrant.PointStruct{
		{
			Id: qdrant.NewIDNum(uint64(1)),
			Vectors: qdrant.NewVectorsMap(map[string]*qdrant.Vector{
				"my-bm25-vector": qdrant.NewVectorDocument(&qdrant.Document{
					Model: "qdrant/bm25",
					Text:  "Recipe for baking chocolate chip cookies",
				}),
			}),
		},
	},
})

Qdrant 使用该模型生成嵌入,并使用生成的向量存储点。检索点会显示生成的嵌入。

    ....
      "my-bm25-vector": {
        "indices": [
          112174620,
          177304315,
          662344706,
          771857363,
          1617337648
        ],
        "values": [
          1.6697302,
          1.6697302,
          1.6697302,
          1.6697302,
          1.6697302
        ]
      }
    ....
]

同样,您可以通过提供要查询的文本和嵌入模型,在查询时使用推理。

POST /collections/{collection_name}/points/query
{
  "query": {
    "text": "How to bake cookies?",
    "model": "qdrant/bm25"
  },
  "using": "my-bm25-vector"
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333", 
    api_key="<your-api-key>", 
    cloud_inference=True
)

client.query_points(
    collection_name="{collection_name}",
    query=models.Document(
        text="How to bake cookies?", 
        model="Qdrant/bm25",
    ),
    using="my-bm25-vector",
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.query("{collection_name}", {
    query: {
        text: 'How to bake cookies?',
        model: 'qdrant/bm25',
    },
    using: 'my-bm25-vector',
});
use qdrant_client::{
    Qdrant, QdrantError,
    qdrant::{Document, Query, QueryPointsBuilder},
};

let client = Qdrant::from_url("<your-qdrant-url>").build().unwrap();

client
    .query(
        QueryPointsBuilder::new("{collection_name}")
            .query(Query::new_nearest(Document {
                text: "How to bake cookies?".into(),
                model: "qdrant/bm25".into(),
                ..Default::default()
            }))
            .using("my-bm25-vector")
            .build(),
    )
    .await?;
import static io.qdrant.client.QueryFactory.nearest;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points;
import io.qdrant.client.grpc.Points.Document;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());
client
    .queryAsync(
        Points.QueryPoints.newBuilder()
            .setCollectionName("{collection_name}")
            .setQuery(
                nearest(
                    Document.newBuilder()
                        .setModel("qdrant/bm25")
                        .setText("How to bake cookies?")
                        .build()))
            .setUsing("my-bm25-vector")
            .build())
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
  host: "xyz-example.qdrant.io",
  port: 6334,
  https: true,
  apiKey: "<your-api-key>"
);

await client.QueryAsync(
    collectionName: "{collection_name}",
    query: new Document() { Model = "qdrant/bm25", Text = "How to bake cookies?" },
    usingVector: "my-bm25-vector"
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
	Host:   "xyz-example.qdrant.io",
	Port:   6334,
	APIKey: "<paste-your-api-key-here>",
	UseTLS: true,
})

client.Query(ctx, &qdrant.QueryPoints{
	CollectionName: "{collection_name}",
	Query: qdrant.NewQueryNearest(
		qdrant.NewVectorInputDocument(&qdrant.Document{
			Model: "qdrant/bm25",
			Text:  "How to bake cookies?",
		}),
	),
	Using: qdrant.PtrOf("my-bm25-vector"),
})

Qdrant 云推理

Qdrant Managed Cloud 上的集群可以访问 托管在 Qdrant Cloud 上 的嵌入模型。有关可用模型的列表,请访问 Qdrant Cloud Console 中集群详细信息页面的“推理”选项卡。您还可以在此处为集群启用云推理(如果尚未启用)。

在使用云托管的嵌入模型之前,请确保您的集合已配置为具有正确维度的向量。Qdrant Cloud Console 中集群详细信息页面的“推理”选项卡列出了每个支持的嵌入模型的维度。

文本推理

让我们考虑一个使用云推理和生成密集向量的文本模型的示例。此示例创建一个点,并使用包含 Document 推理对象的简单搜索查询。

# Insert new points with cloud-side inference
PUT /collections/<your-collection>/points?wait=true
{
  "points": [
    {
      "id": 1,
      "payload": { "topic": "cooking", "type": "dessert" },
      "vector": {
        "text": "Recipe for baking chocolate chip cookies",
        "model": "<the-model-to-use>"
      }
    }
  ]
}

# Search in the collection using cloud-side inference
POST /collections/<your-collection>/points/query
{
  "query": {
    "text": "How to bake cookies?",
    "model": "<the-model-to-use>"
  }
}
# Create a new vector
curl -X PUT "https://xyz-example.qdrant.io:6333/collections/<your-collection>/points?wait=true" \
  -H "Content-Type: application/json" \
  -H "api-key: <paste-your-api-key-here>" \
  -d '{
    "points": [
      {
        "id": 1,
        "payload": { "topic": "cooking", "type": "dessert" },
        "vector": {
          "text": "Recipe for baking chocolate chip cookies",
          "model": "<the-model-to-use>"
        }
      }
    ]
  }'

# Perform a search query
curl -X POST "https://xyz-example.qdrant.io:6333/collections/<your-collection>/points/query" \
  -H "Content-Type: application/json" \
  -H "api-key: <paste-your-api-key-here>" \
  -d '{
    "query": {
      "text": "How to bake cookies?",
      "model": "<the-model-to-use>"
    }
  }'
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, Document

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333",
    api_key="<paste-your-api-key-here>",
    # IMPORTANT
    # If not enabled, inference will be performed locally
    cloud_inference=True,
)

points = [
    PointStruct(
        id=1,
        payload={"topic": "cooking", "type": "dessert"},
        vector=Document(
            text="Recipe for baking chocolate chip cookies",
            model="<the-model-to-use>"
        )
    )
]

client.upsert(collection_name="<your-collection>", points=points)

result = client.query_points(
    collection_name="<your-collection>",
    query=Document(
        text="How to bake cookies?",
        model="<the-model-to-use>"
    )
)

print(result)
import {QdrantClient} from "@qdrant/js-client-rest";

const client = new QdrantClient({
    url: 'https://xyz-example.qdrant.io:6333',
    apiKey: '<paste-your-api-key-here>',
});

const points = [
  {
    id: 1,
    payload: { topic: "cooking", type: "dessert" },
    vector: {
        text: "Recipe for baking chocolate chip cookies",
        model: "<the-model-to-use>"
      }
  }
];

await client.upsert("<your-collection>", { wait: true, points });

const result = await client.query(
    "<your-collection>",
    {
      query: {
          text: "How to bake cookies?",
          model: "<the-model-to-use>"
      },
    }
)

console.log(result);
use qdrant_client::qdrant::Query;
use qdrant_client::qdrant::QueryPointsBuilder;
use qdrant_client::Payload;
use qdrant_client::Qdrant;
use qdrant_client::qdrant::{Document};
use qdrant_client::qdrant::{PointStruct, UpsertPointsBuilder};

#[tokio::main]
async fn main() {
    let client = Qdrant::from_url("https://xyz-example.qdrant.io:6334")
        .api_key("<paste-your-api-key-here>")
        .build()
        .unwrap();

    let points = vec![
        PointStruct::new(
            1,
            Document::new(
                "Recipe for baking chocolate chip cookies",
                "<the-model-to-use>"
            ),
            Payload::try_from(serde_json::json!(
                {"topic": "cooking", "type": "dessert"}
            )).unwrap(),
        )
    ];

    let upsert_request = UpsertPointsBuilder::new(
        "<your-collection>",
        points
    ).wait(true);

    let _ = client.upsert_points(upsert_request).await;

    let query_document = Document::new(
        "How to bake cookies?",
        "<the-model-to-use>"
    );

    let query_request = QueryPointsBuilder::new("<your-collection>")
        .query(Query::new_nearest(query_document));

    let result = client.query(query_request).await.unwrap();
    println!("Result: {:?}", result);
}
package org.example;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.grpc.Points;
import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutionException;

public class Main {
  public static void main(String[] args)
      throws ExecutionException, InterruptedException {
    QdrantClient client =
      new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
        .withApiKey("<paste-your-api-key-here>")
        .build());

    client
      .upsertAsync(
        "<your-collection>",
        List.of(
          PointStruct.newBuilder()
          .setId(id(1))
          .setVectors(
            vectors(
              Document.newBuilder()
              .setText("Recipe for baking chocolate chip cookies")
              .setModel("<the-model-to-use>")
              .build()))
          .putAllPayload(Map.of("topic", value("cooking"), "type", value("dessert")))
          .build()))
      .get();

    List <Points.ScoredPoint> points =
      client
      .queryAsync(
        Points.QueryPoints.newBuilder()
        .setCollectionName("<your-collection>")
        .setQuery(
          nearest(
            Document.newBuilder()
            .setText("How to bake cookies?")
            .setModel("<the-model-to-use>")
            .build()))
        .build())
      .get();

    System.out.printf(points.toString());
  }
}
using Qdrant.Client;
using Qdrant.Client.Grpc;
using Value = Qdrant.Client.Grpc.Value;

var client = new QdrantClient(
  host: "xyz-example.qdrant.io",
  port: 6334,
  https: true,
  apiKey: "<paste-your-api-key-here>"
);

await client.UpsertAsync(
  collectionName: "<your-collection>",
  points: new List <PointStruct> {
    new() {
      Id = 1,
        Vectors = new Document() {
          Text = "Recipe for baking chocolate chip cookies",
          Model = "<the-model-to-use>",
        },
        Payload = {
          ["topic"] = "cooking",
          ["type"] = "dessert"
        },
    },
  }
);

var points = await client.QueryAsync(
  collectionName: "<your-collection>",
  query: new Document() {
    Text = "How to bake cookies?",
    Model = "<the-model-to-use>"
  }
);

foreach(var point in points) {
  Console.WriteLine(point);
}
package main

import (
    "context"
    "log"
    "time"

    "github.com/qdrant/go-client/qdrant"
)

func main() {
    ctx, cancel := context.WithTimeout(context.Background(), time.Second)
    defer cancel()

    client, err := qdrant.NewClient(&qdrant.Config{
        Host:   "xyz-example.qdrant.io",
        Port:   6334,
        APIKey: "<paste-your-api-key-here>",
        UseTLS: true,
    })
    if err != nil {
        log.Fatalf("did not connect: %v", err)
    }
    defer client.Close()

    _, err = client.Upsert(ctx, &qdrant.UpsertPoints{
        CollectionName: "<your-collection>",
        Points: []*qdrant.PointStruct{
            {
                Id: qdrant.NewIDNum(1),
                Vectors: qdrant.NewVectorsDocument(&qdrant.Document{
                    Text:  "Recipe for baking chocolate chip cookies",
                    Model: "<the-model-to-use>",
                }),
                Payload: qdrant.NewValueMap(map[string]any{
                    "topic": "cooking",
                    "type":  "dessert",
                }),
            },
        },
    })
    if err != nil {
        log.Fatalf("error creating point: %v", err)
    }

    points, err := client.Query(ctx, &qdrant.QueryPoints{
        CollectionName: "<your-collection>",
        Query: qdrant.NewQueryNearest(
            qdrant.NewVectorInputDocument(&qdrant.Document{
                Text:  "How to bake cookies?",
                Model: "<the-model-to-use>",
            }),
        ),
    })
    log.Printf("List of points: %s", points)
}

特定于每个集群和模型的用法示例也可以在 Qdrant Cloud Console 中集群详细信息页面的“推理”选项卡中找到。

请注意,每个模型都有一个上下文窗口,即模型在单个请求中可以处理的最大 token 数。如果输入文本超出上下文窗口,它将被截断以适应限制。上下文窗口大小显示在集群详细信息页面的“推理”选项卡中。

对于密集向量模型,您还需要确保集合中配置的向量大小与模型的输出大小匹配。如果向量大小不匹配,则 upsert 将失败并显示错误。

图像推理

这是使用云推理和图像模型的另一个示例。此示例使用 CLIP 模型对图像进行编码,然后使用文本查询搜索该图像。

由于 CLIP 模型是多模态的,我们可以在同一个向量字段上使用图像和文本输入。

# Insert new points with cloud-side inference
PUT /collections/<your-collection>/points?wait=true
{
  "points": [
    {
      "id": 1,
      "vector": {
        "image": "https://qdrant.org.cn/example.png",
        "model": "qdrant/clip-vit-b-32-vision"
      },
      "payload": {
        "title": "Example Image"
      }
    }
  ]
}

# Search in the collection using cloud-side inference
POST /collections/<your-collection>/points/query
{
  "query": {
    "text": "Mission to Mars",
    "model": "qdrant/clip-vit-b-32-text"
  }
}
# Create a new vector
curl -X PUT "https://xyz-example.qdrant.io:6333/collections/<your-collection>/points?wait=true" \
  -H "Content-Type: application/json" \
  -H "api-key: <paste-your-api-key-here>" \
  -d '{
    "points": [
      {
        "id": 1,
        "vector": {
          "image": "https://qdrant.org.cn/example.png",
          "model": "qdrant/clip-vit-b-32-vision"
        },
        "payload": {
          "title": "Example Image"
        }
      }
    ]
  }'

# Perform a search query
curl -X POST "https://xyz-example.qdrant.io:6333/collections/<your-collection>/points/query" \
  -H "Content-Type: application/json" \
  -H "api-key: <paste-your-api-key-here>" \
  -d '{
    "query": {
      "text": "Mission to Mars",
      "model": "qdrant/clip-vit-b-32-text"
    }
  }'
from qdrant_client import QdrantClient
from qdrant_client.models import PointStruct, Image, Document

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333",
    api_key="<paste-your-api-key-here>",
    # IMPORTANT
    # If not enabled, inference will be performed locally
    cloud_inference=True,
)

points = [
    PointStruct(
        id=1,
        vector=Image(
            image="https://qdrant.org.cn/example.png",
            model="qdrant/clip-vit-b-32-vision"
        ),
        payload={
            "title": "Example Image"
        }
    )
]

client.upsert(collection_name="<your-collection>", points=points)

result = client.query_points(
    collection_name="<your-collection>",
    query=Document(
        text="Mission to Mars",
        model="qdrant/clip-vit-b-32-text"
    )
)

print(result)
import {QdrantClient} from "@qdrant/js-client-rest";

const client = new QdrantClient({
    url: 'https://xyz-example.qdrant.io:6333',
    apiKey: '<paste-your-api-key-here>',
});

const points = [
  {
    id: 1,
    vector: {
      image: "https://qdrant.org.cn/example.png",
      model: "qdrant/clip-vit-b-32-vision"
    },
    payload: {
      title: "Example Image"
    }
  }
];

await client.upsert("<your-collection>", { wait: true, points });

const result = await client.query(
    "<your-collection>",
    {
      query: {
          text: "Mission to Mars",
          model: "qdrant/clip-vit-b-32-text"
      },
    }
)

console.log(result);
use qdrant_client::qdrant::Query;
use qdrant_client::qdrant::QueryPointsBuilder;
use qdrant_client::Payload;
use qdrant_client::Qdrant;
use qdrant_client::qdrant::{Document, Image};
use qdrant_client::qdrant::{PointStruct, UpsertPointsBuilder};

#[tokio::main]
async fn main() {
    let client = Qdrant::from_url("https://xyz-example.qdrant.io:6334")
        .api_key("<paste-your-api-key-here>")
        .build()
        .unwrap();

    let points = vec![
        PointStruct::new(
            1,
            Image::new_from_url(
                "https://qdrant.org.cn/example.png",
                "qdrant/clip-vit-b-32-vision"
            ),
            Payload::try_from(serde_json::json!({
                "title": "Example Image"
            })).unwrap(),
        )
    ];

    let upsert_request = UpsertPointsBuilder::new(
        "<your-collection>",
        points
    ).wait(true);

    let _ = client.upsert_points(upsert_request).await;

    let query_document = Document::new(
        "Mission to Mars",
        "qdrant/clip-vit-b-32-text"
    );

    let query_request = QueryPointsBuilder::new("<your-collection>")
        .query(Query::new_nearest(query_document));

    let result = client.query(query_request).await.unwrap();
    println!("Result: {:?}", result);
}
package org.example;

import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.grpc.Points;
import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ExecutionException;

public class Main {
  public static void main(String[] args)
      throws ExecutionException, InterruptedException {
    QdrantClient client =
      new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
        .withApiKey("<paste-your-api-key-here>")
        .build());

    client
      .upsertAsync(
        "<your-collection>",
        List.of(
          PointStruct.newBuilder()
          .setId(id(1))
          .setVectors(
            vectors(
              Image.newBuilder()
              .setImage(value("https://qdrant.org.cn/example.png"))
              .setModel("qdrant/clip-vit-b-32-vision")
              .build()))
          .putAllPayload(Map.of("title", value("Example Image")))
          .build()))
      .get();

    List <Points.ScoredPoint> points =
      client
      .queryAsync(
        Points.QueryPoints.newBuilder()
        .setCollectionName("<your-collection>")
        .setQuery(
          nearest(
            Document.newBuilder()
            .setText("Mission to Mars")
            .setModel("qdrant/clip-vit-b-32-text")
            .build()))
        .build())
      .get();

    System.out.printf(points.toString());
  }
}
using Qdrant.Client;
using Qdrant.Client.Grpc;
using Value = Qdrant.Client.Grpc.Value;

var client = new QdrantClient(
  host: "xyz-example.qdrant.io",
  port: 6334,
  https: true,
  apiKey: "<paste-your-api-key-here>"
);

await client.UpsertAsync(
  collectionName: "<your-collection>",
  points: new List <PointStruct> {
    new() {
      Id = 1,
        Vectors = new Image() {
          Image_ = "https://qdrant.org.cn/example.png",
          Model = "qdrant/clip-vit-b-32-vision",
        },
        Payload = {
          ["title"] = "Example Image"
        },
    },
  }
);

var points = await client.QueryAsync(
  collectionName: "<your-collection>",
  query: new Document() {
    Text = "Mission to Mars",
    Model = "qdrant/clip-vit-b-32-text"
  }
);

foreach(var point in points) {
  Console.WriteLine(point);
}
package main

import (
    "context"
    "log"
    "time"

    "github.com/qdrant/go-client/qdrant"
)

func main() {
    ctx, cancel := context.WithTimeout(context.Background(), time.Second)
    defer cancel()

    client, err := qdrant.NewClient(&qdrant.Config{
        Host:   "xyz-example.qdrant.io",
        Port:   6334,
        APIKey: "<paste-your-api-key-here>",
        UseTLS: true,
    })
    if err != nil {
        log.Fatalf("did not connect: %v", err)
    }
    defer client.Close()

    _, err = client.Upsert(ctx, &qdrant.UpsertPoints{
        CollectionName: "<your-collection>",
        Points: []*qdrant.PointStruct{
            {
                Id: qdrant.NewIDNum(1),
                Vectors: qdrant.NewVectorsImage(&qdrant.Image{
                    Model: "qdrant/clip-vit-b-32-vision",
                    Image: qdrant.NewValueString("https://qdrant.org.cn/example.png"),
                }),
                Payload: qdrant.NewValueMap(map[string]any{
                    "title": "Example image",
                }),
            },
        },
    })
    if err != nil {
        log.Fatalf("error creating point: %v", err)
    }

    points, err := client.Query(ctx, &qdrant.QueryPoints{
        CollectionName: "<your-collection>",
        Query: qdrant.NewQueryNearest(
            qdrant.NewVectorInputDocument(&qdrant.Document{
                Text:  "Mission to Mars",
                Model: "qdrant/clip-vit-b-32-text",
            }),
        ),
    })
    log.Printf("List of points: %s", points)
}

Qdrant Cloud 推理服务器将使用提供的 URL 下载图像。或者,您可以将图像作为 base64 编码的字符串提供。每个模型对可以使用的文件大小和扩展名都有限制。有关详细信息,请参阅模型卡。

本地推理兼容性

Python SDK 提供了一个独特的功能:它通过相同的接口支持 本地 和云推理。

您可以通过在初始化 QdrantClient 时设置 cloud_inference 标志,轻松地在本地推理和云推理之间切换。例如:

client = QdrantClient(
    url="https://your-cluster.qdrant.io",
    api_key="<your-api-key>",
    cloud_inference=True,  # Set to False to use local inference
)

这种灵活性允许您在本地或持续集成 (CI) 环境中开发和测试您的应用程序,而无需访问云推理资源。

  • cloud_inference 设置为 False 时,推理使用 fastembed 在本地执行。
  • 当设置为 True 时,推理请求由 Qdrant Cloud 处理。

外部嵌入模型提供商

Qdrant Cloud 可以充当三个外部嵌入模型提供商的 API 代理:

  • OpenAI
  • Cohere
  • Jina AI

这使您可以通过 Qdrant API 访问这些提供商提供的任何嵌入模型。

要使用外部提供商的嵌入模型,您需要该提供商的 API 密钥。例如,要访问 OpenAI 模型,您需要一个 OpenAI API 密钥。Qdrant 不存储或缓存您的 API 密钥;它们必须随每个推理请求提供。

使用外部嵌入模型时,请确保您的集合已配置为具有正确维度的向量。有关输出维度的详细信息,请参阅模型的文档。

OpenAI

当您在模型名称前加上 openai/ 时,嵌入请求会自动路由到 OpenAI 嵌入 API

例如,在摄取数据时使用 OpenAI 的 text-embedding-3-large 模型,在模型名称前加上 openai/ 并在 options 对象中提供您的 OpenAI API 密钥。此示例使用 OpenAI 特定的 API dimensions 参数将维度减少到 512。

PUT /collections/{collection_name}/points?wait=true
{
  "points": [
    {
      "id": 1,
      "vector": {
        "text": "Recipe for baking chocolate chip cookies",
        "model": "openai/text-embedding-3-large",
        "options": {
          "openai-api-key": "<YOUR_OPENAI_API_KEY>",
          "dimensions": 512
        }
      }
    }
  ]
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333", 
    api_key="<your-api-key>", 
    cloud_inference=True
)

client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            vector=models.Document(
                text="Recipe for baking chocolate chip cookies",
                model="openai/text-embedding-3-large",
                options={
                    "openai-api-key": "<your_openai_api_key>",
                    "dimensions": 512
                }
            )
        )
    ]
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.upsert("{collection_name}", {
    points: [
        {
            id: 1,
            vector: {
                text: 'Recipe for baking chocolate chip cookies',
                model: 'openai/text-embedding-3-large',
                options: {
                    'openai-api-key': '<your_openai_api_key>',
                    dimensions: 512,
                },
            },
        },
    ],
});
use qdrant_client::{
    Payload, Qdrant, QdrantError,
    qdrant::{Document, PointStruct, UpsertPointsBuilder},
};
use std::collections::HashMap;

let client = Qdrant::from_url("<your-qdrant-url>").build()?;
let mut options = HashMap::new();
options.insert("openai-api-key".to_string(), "<YOUR_OPENAI_API_KEY>".into());
options.insert("dimensions".to_string(), 512.into());

client
    .upsert_points(UpsertPointsBuilder::new("{collection_name}",
        vec![
            PointStruct::new(1,
                Document {
                  text: "Recipe for baking chocolate chip cookies".into(),
                  model: "openai/text-embedding-3-large".into(),
                  options,
                  },
                Payload::default())
            ]).wait(true))
        .await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(
                    vectors(
                        Document.newBuilder()
                            .setModel("openai/text-embedding-3-large")
                            .setText("Recipe for baking chocolate chip cookies")
                            .putAllOptions(
                                Map.of(
                                    "openai-api-key",
                                    value("<YOUR_OPENAI_API_KEY>"),
                                    "dimensions",
                                    value(512)))
                            .build()))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
host: "xyz-example.qdrant.io", port: 6334, https: true, apiKey: "<your-api-key>");

await client.UpsertAsync(
    collectionName: "{collection_name}",
    points: new List<PointStruct>
    {
        new()
        {
            Id = 1,
            Vectors = new Document()
            {
                Model = "openai/text-embedding-3-large",
                Text = "Recipe for baking chocolate chip cookies",
                Options = { ["openai-api-key"] = "<YOUR_OPENAI_API_KEY>", ["dimensions"] = 512 },
            },
        },
    }
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
	Host:   "xyz-example.qdrant.io",
	Port:   6334,
	APIKey: "<paste-your-api-key-here>",
	UseTLS: true,
})

client.Upsert(ctx, &qdrant.UpsertPoints{
	CollectionName: "{collection_name}",
	Points: []*qdrant.PointStruct{
		{
			Id: qdrant.NewIDNum(uint64(1)),
			Vectors: qdrant.NewVectorsDocument(&qdrant.Document{
				Model: "openai/text-embedding-3-large",
				Text:  "Recipe for baking chocolate chip cookies",
				Options: qdrant.NewValueMap(map[string]any{
					"openai-api-key": "<YOUR_OPENAI_API_KEY>",
					"dimensions":     512,
				}),
			}),
		},
	},
})

在查询时,您可以通过在模型名称前加上 openai/ 并在 options 对象中提供您的 OpenAI API 密钥来使用相同的模型。此示例再次使用 OpenAI 特定的 API dimensions 参数将维度减少到 512。

POST /collections/{collection_name}/points/query
{
  "query": {
    "text": "How to bake cookies?",
    "model": "openai/text-embedding-3-large",
    "options": {
      "openai-api-key": "<YOUR_OPENAI_API_KEY>",
      "dimensions": 512
    }
  }
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333",
    api_key="<your-api-key>",
    cloud_inference=True
)

client.query_points(
    collection_name="{collection_name}",
    query=models.Document(
        text="How to bake cookies?",
        model="openai/text-embedding-3-large",
        options={
            "openai-api-key": "<your_openai_api_key>",
            "dimensions": 512
        }
    )
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.query("{collection_name}", {
    query: {
        text: 'How to bake cookies?',
        model: 'openai/text-embedding-3-large',
        options: {
            'openai-api-key': '<your_openai_api_key>',
            dimensions: 512,
        },
    },
});
use qdrant_client::{
    Qdrant, QdrantError,
    qdrant::{Document, Query, QueryPointsBuilder, Value},
};
use std::collections::HashMap;

let client = Qdrant::from_url("<your-qdrant-url>").build().unwrap();

let mut options = HashMap::<String, Value>::new();
options.insert("openai-api-key".to_string(), "<YOUR_OPENAI_API_KEY>".into());
options.insert("dimensions".to_string(), 512.into());

client
    .query(
        QueryPointsBuilder::new("{collection_name}")
            .query(Query::new_nearest(Document {
                text: "How to bake cookies?".into(),
                model: "openai/text-embedding-3-large".into(),
                options,
            }))
            .build(),
    )
    .await?;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import java.util.Map;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());
client
    .queryAsync(
        Points.QueryPoints.newBuilder()
            .setCollectionName("{collection_name}")
            .setQuery(
                nearest(
                    Document.newBuilder()
                        .setModel("openai/text-embedding-3-large")
                        .setText("How to bake cookies?")
                        .putAllOptions(
                            Map.of(
                                "openai-api-key",
                                value("<YOUR_OPENAI_API_KEY>"),
                                "dimensions",
                                value(512)))
                        .build()))
            .build())
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
  host: "xyz-example.qdrant.io",
  port: 6334,
  https: true,
  apiKey: "<your-api-key>"
);

await client.QueryAsync(
    collectionName: "{collection_name}",
    query: new Document()
    {
        Model = "openai/text-embedding-3-large",
        Text = "How to bake cookies?",
        Options = { ["openai-api-key"] = "<YOUR_OPENAI_API_KEY>", ["dimensions"] = 512 },
    }
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
	Host:   "xyz-example.qdrant.io",
	Port:   6334,
	APIKey: "<paste-your-api-key-here>",
	UseTLS: true,
})

client.Query(ctx, &qdrant.QueryPoints{
	CollectionName: "{collection_name}",
	Query: qdrant.NewQueryNearest(
		qdrant.NewVectorInputDocument(&qdrant.Document{
			Model: "openai/text-embedding-3-large",
			Text:  "How to bake cookies?",
			Options: qdrant.NewValueMap(map[string]any{
				"openai-api-key": "<YOUR_OPENAI_API_KEY>",
				"dimensions":     512,
			}),
		}),
	),
})

请注意,由于 Qdrant 不存储或缓存您的 OpenAI API 密钥,因此您需要为每个推理请求提供它。

Cohere

当您在模型名称前加上 cohere/ 时,嵌入请求会自动路由到 Cohere Embed API

例如,在摄取数据时使用 Cohere 的多模态 embed-v4.0 模型,在模型名称前加上 cohere/ 并在 options 对象中提供您的 Cohere API 密钥。此示例使用 Cohere 特定的 API output_dimension 参数将维度减少到 512。

PUT /collections/{collection_name}/points?wait=true
{
  "points": [
    {
      "id": 1,
      "vector": {
        "image": "",
        "model": "cohere/embed-v4.0",
        "options": {
          "cohere-api-key": "<YOUR_COHERE_API_KEY>",
          "output_dimension": 512
        }
      }
    }
  ]
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333", 
    api_key="<your-api-key>", 
    cloud_inference=True
)

client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            vector=models.Document(
                text="a green square",
                model="cohere/embed-v4.0",
                options={
                    "cohere-api-key": "<your_cohere_api_key>",
                    "output_dimension": 512
                }
            )
        )
    ]
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.upsert("{collection_name}", {
    points: [
        {
            id: 1,
            vector: {
                text: 'a green square',
                model: 'cohere/embed-v4.0',
                options: {
                    'cohere-api-key': '<your_cohere_api_key>',
                    output_dimension: 512,
                },
            },
        },
    ],
});
use qdrant_client::{
    Payload, Qdrant, QdrantError,
    qdrant::{Document, PointStruct, UpsertPointsBuilder},
};
use std::collections::HashMap;

let client = Qdrant::from_url("<your-qdrant-url>").build()?;
let mut options = HashMap::new();
options.insert("cohere-api-key".to_string(), "<YOUR_COHERE_API_KEY>".into());
options.insert("output_dimension".to_string(), 512.into());

client
    .upsert_points(UpsertPointsBuilder::new("{collection_name}",
        vec![
            PointStruct::new(1,
                Document {
                  text: "Recipe for baking chocolate chip cookies requires flour, sugar, eggs, and chocolate chips.".into(),
                  model: "openai/text-embedding-3-small".into(),
                  options,
                  },
                Payload::default())
            ]).wait(true))
        .await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(
                    vectors(
                        Image.newBuilder()
                            .setModel("cohere/embed-v4.0")
                            .setImage(
                                value(
                                    ""))
                            .putAllOptions(
                                Map.of(
                                    "cohere-api-key",
                                    value("<YOUR_COHERE_API_KEY>"),
                                    "output_dimension",
                                    value(512)))
                            .build()))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
host: "xyz-example.qdrant.io", port: 6334, https: true, apiKey: "<your-api-key>");

await client.UpsertAsync(
    collectionName: "{collection_name}",
    points: new List<PointStruct>
    {
        new()
        {
            Id = 1,
            Vectors = new Image()
            {
                Model = "cohere/embed-v4.0",
                Image_ =
                    "",
                Options =
                {
                    ["cohere-api-key"] = "<YOUR_COHERE_API_KEY>",
                    ["output_dimension"] = 512,
                },
            },
        },
    }
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
    Host:   "xyz-example.qdrant.io",
    Port:   6334,
    APIKey: "<paste-your-api-key-here>",
    UseTLS: true,
})

client.Upsert(ctx, &qdrant.UpsertPoints{
	CollectionName: "{collection_name}",
	Points: []*qdrant.PointStruct{
		{
			Id: qdrant.NewIDNum(uint64(1)),
			Vectors: qdrant.NewVectorsImage(&qdrant.Image{
				Model: "cohere/embed-v4.0",
				Image: qdrant.NewValueString(""),
				Options: qdrant.NewValueMap(map[string]any{
					"cohere-api-key":   "<YOUR_COHERE_API_KEY>",
					"output_dimension": 512,
				}),
			}),
		},
	},
})

请注意,Cohere embed-v4.0 模型不支持将图像作为 URL 传递。您需要提供 base64 编码的图像作为数据 URL。

在查询时,您可以通过在模型名称前加上 cohere/ 并在 options 对象中提供您的 Cohere API 密钥来使用相同的模型。此示例再次使用 Cohere 特定的 API output_dimension 参数将维度减少到 512。

POST /collections/{collection_name}/points/query
{
  "query": {
    "text": "a green square",
    "model": "cohere/embed-v4.0",
    "options": {
      "cohere-api-key": "<YOUR_COHERE_API_KEY>",
      "output_dimension": 512
    }
  }
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333", 
    api_key="<your-api-key>", 
    cloud_inference=True
)

client.query_points(
    collection_name="{collection_name}",
    query=models.Document(
        text="a green square", 
        model="cohere/embed-v4.0", 
        options={
            "cohere-api-key": "<your_cohere_api_key>", 
            "output_dimension": 512
        }
    )
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.query("{collection_name}", {
    query: {
        text: 'a green square',
        model: 'cohere/embed-v4.0',
        options: {
            'cohere-api-key': '<your_cohere_api_key>',
            output_dimension: 512,
        },
    },
});
use qdrant_client::{
    Qdrant, QdrantError,
    qdrant::{Document, Query, QueryPointsBuilder, Value},
};
use std::collections::HashMap;

let client = Qdrant::from_url("https://:6333").build().unwrap();

let mut options = HashMap::<String, Value>::new();
options.insert("cohere-api-key".to_string(), "<YOUR_COHERE_API_KEY>".into());
options.insert("output_dimension".to_string(), 512.into());

client
    .query(
        QueryPointsBuilder::new("{collection_name}")
            .query(Query::new_nearest(Document {
                text: "a green square".into(),
                model: "cohere/embed-v4.0".into(),
                options,
            }))
            .build(),
    )
    .await?;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import java.util.Map;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());

client
    .queryAsync(
        Points.QueryPoints.newBuilder()
            .setCollectionName("{collection_name}")
            .setQuery(
                nearest(
                    Document.newBuilder()
                        .setModel("cohere/embed-v4.0")
                        .setText("a green square")
                        .putAllOptions(
                            Map.of(
                                "cohere-api-key",
                                value("<YOUR_COHERE_API_KEY>"),
                                "output_dimension",
                                value(512)))
                        .build()))
            .build())
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
  host: "xyz-example.qdrant.io",
  port: 6334,
  https: true,
  apiKey: "<your-api-key>"
);

await client.QueryAsync(
    collectionName: "{collection_name}",
    query: new Document()
    {
        Model = "cohere/embed-v4.0",
        Text = "a green square",
        Options = { ["cohere-api-key"] = "<YOUR_COHERE_API_KEY>", ["output_dimension"] = 512 },
    }
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
    Host:   "xyz-example.qdrant.io",
    Port:   6334,
    APIKey: "<paste-your-api-key-here>",
    UseTLS: true,
})

client.Query(ctx, &qdrant.QueryPoints{
	CollectionName: "{collection_name}",
	Query: qdrant.NewQueryNearest(
		qdrant.NewVectorInputDocument(&qdrant.Document{
			Text:  "a green square",
			Model: "cohere/embed-v4.0",
			Options: qdrant.NewValueMap(map[string]any{
				"cohere-api-key":   "<YOUR_COHERE_API_KEY>",
				"output_dimension": 512,
			}),
		}),
	),
})

请注意,由于 Qdrant 不存储或缓存您的 Cohere API 密钥,因此您需要为每个推理请求提供它。

Jina AI

当您在模型名称前加上 jinaai/ 时,嵌入请求会自动路由到 Jina AI 嵌入 API

例如,在摄取数据时使用 Jina AI 的多模态 jina-clip-v2 模型,在模型名称前加上 jinaai/ 并在 options 对象中提供您的 Jina AI API 密钥。此示例使用 Jina AI 特定的 API dimensions 参数将维度减少到 512。

PUT /collections/{collection_name}/points?wait=true
{
  "points": [
    {
      "id": 1,
      "vector": {
        "image": "https://qdrant.org.cn/example.png",
        "model": "jinaai/jina-clip-v2",
        "options": {
          "jina-api-key": "<YOUR_JINAAI_API_KEY>",
          "dimensions": 512
        }
      }
    }
  ]
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333", 
    api_key="<your-api-key>", 
    cloud_inference=True
)

client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            vector=models.Image(
                image="https://qdrant.org.cn/example.png",
                model="jinaai/jina-clip-v2",
                options={
                    "jina-api-key": "<your_jinaai_api_key>",
                    "dimensions": 512
                }
            )
        )
    ]
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.upsert("{collection_name}", {
    points: [
        {
            id: 1,
            vector: {
                image: 'https://qdrant.org.cn/example.png',
                model: 'jinaai/jina-clip-v2',
                options: {
                    'jina-api-key': '<your_jinaai_api_key>',
                    dimensions: 512,
                },
            },
        },
    ],
});
use qdrant_client::{
    Payload, Qdrant, QdrantError,
    qdrant::{Image, PointStruct, UpsertPointsBuilder},
};
use std::collections::HashMap;

let client = Qdrant::from_url("<your-qdrant-url>").build()?;
let mut options = HashMap::new();
options.insert("jina-api-key".to_string(), "<YOUR_JINAAI_API_KEY>".into());
options.insert("dimensions".to_string(), 512.into());

client
    .upsert_points(UpsertPointsBuilder::new("{collection_name}",
        vec![
            PointStruct::new(1,
                Image {
                  image: Some("https://qdrant.org.cn/example.png".into()),
                  model: "jinaai/jina-clip-v2".into(),
                  options,
                  },
                Payload::default())
            ]).wait(true))
        .await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorsFactory.vectors;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(
                    vectors(
                        Image.newBuilder()
                            .setModel("jinaai/jina-clip-v2")
                            .setImage(value("https://qdrant.org.cn/example.png"))
                            .putAllOptions(
                                Map.of(
                                    "jina-api-key",
                                    value("<YOUR_JINAAI_API_KEY>"),
                                    "dimensions",
                                    value(512)))
                            .build()))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
  host: "xyz-example.qdrant.io",
  port: 6334,
  https: true,
  apiKey: "<your-api-key>"
);

await client.UpsertAsync(
    collectionName: "{collection_name}",
    points: new List<PointStruct>
    {
        new()
        {
            Id = 1,
            Vectors = new Document()
            {
                Model = "jinaai/jina-clip-v2",
                Text = "Mission to Mars",
                Options = { ["jina-api-key"] = "<YOUR_JINAAI_API_KEY>", ["dimensions"] = 512 },
            },
        },
    }
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
	Host:   "xyz-example.qdrant.io",
	Port:   6334,
	APIKey: "<paste-your-api-key-here>",
	UseTLS: true,
})

client.Upsert(ctx, &qdrant.UpsertPoints{
	CollectionName: "{collection_name}",
	Points: []*qdrant.PointStruct{
		{
			Id: qdrant.NewIDNum(uint64(1)),
			Vectors: qdrant.NewVectorsImage(&qdrant.Image{
				Model: "jinaai/jina-clip-v2",
				Image: qdrant.NewValueString("https://qdrant.org.cn/example.png"),
				Options: qdrant.NewValueMap(map[string]any{
					"jina-api-key": "<YOUR_JINAAI_API_KEY>",
					"dimensions":   512,
				}),
			}),
		},
	},
})

在查询时,您可以通过在模型名称前加上 jinaai/ 并在 options 对象中提供您的 Jina AI API 密钥来使用相同的模型。此示例再次使用 Jina AI 特定的 API dimensions 参数将维度减少到 512。

POST /collections/{collection_name}/points/query
{
  "query": {
    "text": "Mission to Mars",
    "model": "jinaai/jina-clip-v2",
    "options": {
      "jina-api-key": "<YOUR_JINAAI_API_KEY>",
      "dimensions": 512
    }
  }
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333", 
    api_key="<your-api-key>", 
    cloud_inference=True
)

client.query_points(
    collection_name="{collection_name}",
    query=models.Document(
        text="Mission to Mars", 
        model="jinaai/jina-clip-v2", 
        options={
            "jina-api-key": "<your_jinaai_api_key>", 
            "dimensions": 512
        }
    )
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.query("{collection_name}", {
    query: {
        text: 'Mission to Mars',
        model: 'jinaai/jina-clip-v2',
        options: {
            'jina-api-key': '<your_jinaai_api_key>',
            dimensions: 512,
        },
    },
});
use qdrant_client::{
    Qdrant, QdrantError,
    qdrant::{Document, Query, QueryPointsBuilder, Value},
};
use std::collections::HashMap;

let client = Qdrant::from_url("<your-qdrant-url>").build().unwrap();

let mut options = HashMap::<String, Value>::new();
options.insert("jina-api-key".to_string(), "<YOUR_JINAAI_API_KEY>".into());
options.insert("dimensions".to_string(), 512.into());

client
    .query(
        QueryPointsBuilder::new("{collection_name}")
            .query(Query::new_nearest(Document {
                text: "Mission to Mars".into(),
                model: "jinaai/jina-clip-v2".into(),
                options,
            }))
            .build(),
    )
    .await?;
import static io.qdrant.client.QueryFactory.nearest;
import static io.qdrant.client.ValueFactory.value;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import java.util.Map;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());
client
    .queryAsync(
        Points.QueryPoints.newBuilder()
            .setCollectionName("{collection_name}")
            .setQuery(
                nearest(
                    Document.newBuilder()
                        .setModel("jinaai/jina-clip-v2")
                        .setText("Mission to Mars")
                        .putAllOptions(
                            Map.of(
                                "jina-api-key",
                                value("<YOUR_JINAAI_API_KEY>"),
                                "dimensions",
                                value(512)))
                        .build()))
            .build())
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
  host: "xyz-example.qdrant.io",
  port: 6334,
  https: true,
  apiKey: "<your-api-key>"
);

await client.QueryAsync(
    collectionName: "{collection_name}",
    query: new Document()
    {
        Model = "jinaai/jina-clip-v2",
        Text = "Mission to Mars",
        Options = { ["jina-api-key"] = "<YOUR_JINAAI_API_KEY>", ["dimensions"] = 512 },
    }
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
    Host:   "xyz-example.qdrant.io",
    Port:   6334,
    APIKey: "<paste-your-api-key-here>",
    UseTLS: true,
})

client.Query(ctx, &qdrant.QueryPoints{
	CollectionName: "{collection_name}",
	Query: qdrant.NewQueryNearest(
		qdrant.NewVectorInputDocument(&qdrant.Document{
			Text:  "Mission to Mars",
			Model: "jinaai/jina-clip-v2",
			Options: qdrant.NewValueMap(map[string]any{
				"jina-api-key": "<YOUR_JINAAI_API_KEY>",
				"dimensions":   512,
			}),
		}),
	),
})

请注意,由于 Qdrant 不存储或缓存您的 Jina AI API 密钥,因此您需要为每个推理请求提供它。

多次推理操作

您可以在单个请求中运行多个推理操作,即使模型托管在不同位置。此示例为一个点生成三个不同的命名向量:使用 Jina AI 托管的 jina-clip-v2 的图像嵌入,使用 Qdrant Cloud 托管的 all-minilm-l6-v2 的文本嵌入,以及使用 Qdrant 集群在本地执行的 bm25 模型的 BM25 嵌入。

PUT /collections/{collection_name}/points?wait=true
{
  "points": [
    {
      "id": 1,
      "vector": {
        "image": {
          "image": "https://qdrant.org.cn/example.png",
          "model": "jinaai/jina-clip-v2",
          "options": {
            "jina-api-key": "<YOUR_JINAAI_API_KEY>",
            "dimensions": 512
          }
        },
        "text": {
          "text": "Mars, the red planet",
          "model": "sentence-transformers/all-minilm-l6-v2"
        },
        "bm25": {
          "text": "Mars, the red planet",
          "model": "qdrant/bm25"
        }
      }
    }
  ]
}
from qdrant_client import QdrantClient, models

client = QdrantClient(
    url="https://xyz-example.qdrant.io:6333",
    api_key="<your-api-key>",
    cloud_inference=True
)

client.upsert(
    collection_name="{collection_name}",
    points=[
        models.PointStruct(
            id=1,
            vector={
                "image": models.Image(
                    image="https://qdrant.org.cn/example.png",
                    model="jinaai/jina-clip-v2",
                    options={
                        "jina-api-key": "<your_jinaai_api_key>",
                        "dimensions": 512
                    },
                ),
                "text": models.Document(
                    text="Mars, the red planet",
                    model="sentence-transformers/all-minilm-l6-v2",
                ),
                "bm25": models.Document(
                    text="Mars, the red planet",
                    model="Qdrant/bm25",
                ),
            },
        )
    ],
)
import { QdrantClient } from "@qdrant/js-client-rest";

const client = new QdrantClient({ host: "localhost", port: 6333 });

client.upsert("{collection_name}", {
    points: [
        {
            id: 1,
            vector: {
                image: {
                    image: 'https://qdrant.org.cn/example.png',
                    model: 'jinaai/jina-clip-v2',
                    options: {
                        'jina-api-key': '<your_jinaai_api_key>',
                        dimensions: 512,
                    },
                },
                text: {
                    text: 'Mars, the red planet',
                    model: 'sentence-transformers/all-minilm-l6-v2',
                },
                bm25: {
                    text: 'Mars, the red planet',
                    model: 'Qdrant/bm25',
                },
            },
        },
    ],
});
use qdrant_client::{
    Payload, Qdrant, QdrantError,
    qdrant::{Document, PointStruct, UpsertPointsBuilder, Vectors},
};
use std::collections::HashMap;

let client = Qdrant::from_url("<your-qdrant-url>").build()?;

let mut jina_options = HashMap::new();
jina_options.insert("jina-api-key".to_string(), "<YOUR_JINAAI_API_KEY>".into());
jina_options.insert("dimensions".to_string(), 512.into());

client
    .upsert_points(
        UpsertPointsBuilder::new(
            "{collection_name}",
            vec![PointStruct::new(
                1,
                NamedVectors::default()
                    .add_vector(
                        "image",
                        Image {
                            image: Some("https://qdrant.org.cn/example.png".into()),
                            model: "jinaai/jina-clip-v2".into(),
                            options: jina_options,
                        },
                    )
                    .add_vector(
                        "text",
                        Document {
                            text: "Mars, the red planet".into(),
                            model: "sentence-transformers/all-minilm-l6-v2".into(),
                            ..Default::default()
                        },
                    )
                    .add_vector(
                        "bm25",
                        Document {
                            text: "How to bake cookies?".into(),
                            model: "qdrant/bm25".into(),
                            ..Default::default()
                        },
                    ),
                Payload::default(),
            )],
        )
        .wait(true),
    )
    .await?;
import static io.qdrant.client.PointIdFactory.id;
import static io.qdrant.client.ValueFactory.value;
import static io.qdrant.client.VectorFactory.vector;
import static io.qdrant.client.VectorsFactory.namedVectors;

import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Points.Document;
import io.qdrant.client.grpc.Points.Image;
import io.qdrant.client.grpc.Points.PointStruct;
import java.util.List;
import java.util.Map;

QdrantClient client =
    new QdrantClient(
        QdrantGrpcClient.newBuilder("xyz-example.qdrant.io", 6334, true)
            .withApiKey("<your-api-key")
            .build());

client
    .upsertAsync(
        "{collection_name}",
        List.of(
            PointStruct.newBuilder()
                .setId(id(1))
                .setVectors(
                    namedVectors(
                        Map.of(
                            "image",
                            vector(
                                Image.newBuilder()
                                    .setModel("jinaai/jina-clip-v2")
                                    .setImage(value("https://qdrant.org.cn/example.png"))
                                    .putAllOptions(
                                        Map.of(
                                            "jina-api-key",
                                            value("<YOUR_JINAAI_API_KEY>"),
                                            "dimensions",
                                            value(512)))
                                    .build()),
                            "text",
                            vector(
                                Document.newBuilder()
                                    .setModel("sentence-transformers/all-minilm-l6-v2")
                                    .setText("Mars, the red planet")
                                    .build()),
                            "bm25",
                            vector(
                                Document.newBuilder()
                                    .setModel("qdrant/bm25")
                                    .setText("Mars, the red planet")
                                    .build()))))
                .build()))
    .get();
using Qdrant.Client;
using Qdrant.Client.Grpc;

var client = new QdrantClient(
host: "xyz-example.qdrant.io", port: 6334, https: true, apiKey: "<your-api-key>");

await client.UpsertAsync(
    collectionName: "{collection_name}",
    points: new List<PointStruct>
    {
        new()
        {
            Id = 1,
            Vectors = new Dictionary<string, Vector>
            {
                ["image"] = new Image()
                {
                    Model = "jinaai/jina-clip-v2",
                    Image_ = "https://qdrant.org.cn/example.png",
                    Options = { ["jina-api-key"] = "<YOUR_JINAAI_API_KEY>", ["dimensions"] = 512 },
                },
                ["text"] = new Document()
                {
                    Model = "sentence-transformers/all-minilm-l6-v2",
                    Text = "Mars, the red planet",
                },
                ["bm25"] = new Document() { Model = "qdrant/bm25", Text = "Mars, the red planet" },
            },
        },
    }
);
import (
	"context"
	"time"

	"github.com/qdrant/go-client/qdrant"
)

client, err := qdrant.NewClient(&qdrant.Config{
	Host:   "xyz-example.qdrant.io",
	Port:   6334,
	APIKey: "<paste-your-api-key-here>",
	UseTLS: true,
})

client.Upsert(ctx, &qdrant.UpsertPoints{
	CollectionName: "{collection_name}",
	Points: []*qdrant.PointStruct{
		{
			Id: qdrant.NewIDNum(uint64(1)),
			Vectors: qdrant.NewVectorsMap(map[string]*qdrant.Vector{
				"image": qdrant.NewVectorImage(&qdrant.Image{
					Model: "jinaai/jina-clip-v2",
					Image: qdrant.NewValueString("https://qdrant.org.cn/example.png"),
					Options: qdrant.NewValueMap(map[string]any{
						"jina-api-key": "<YOUR_JINAAI_API_KEY>",
						"dimensions":   512,
					}),
				}),
				"text": qdrant.NewVectorDocument(&qdrant.Document{
					Model: "sentence-transformers/all-minilm-l6-v2",
					Text:  "Mars, the red planet",
				}),
				"my-bm25-vector": qdrant.NewVectorDocument(&qdrant.Document{
					Model: "qdrant/bm25",
					Text:  "Recipe for baking chocolate chip cookies",
				}),
			}),
		},
	},
})
此页面有用吗?

感谢您的反馈!🙏

听到您不满意我们深感抱歉。😔 您可以在 GitHub 上编辑此页面,或者创建一个 GitHub 问题。