将向量批量上传到 Qdrant 集合
快速上传大规模数据集可能具有挑战性,但 Qdrant 有一些技巧可以帮助您解决这个问题。
数据上传的第一个重要细节是,瓶颈通常位于客户端,而不是服务器端。这意味着如果您正在上传大规模数据集,您应该优先选择高性能的客户端库。
为此,我们建议使用我们的Rust 客户端库,因为它是 Qdrant 可用的最快的客户端库。
如果您不使用 Rust,您可能需要考虑并行化您的上传过程。
选择索引策略
Qdrant 在新数据到达时为密集向量增量构建 HNSW 索引。这确保了快速搜索,但索引是内存和 CPU 密集型的。在批量摄入期间,频繁的索引更新会降低吞吐量并增加资源使用率。
要控制此行为并针对系统限制进行优化,请调整以下参数
您的目标 | 操作 | 配置 |
---|---|---|
最快上传,可容忍高 RAM 使用率 | 完全禁用索引 | indexing_threshold: 0 |
上传期间低内存使用率 | 延迟 HNSW 图构建(推荐) | m: 0 |
上传后更快地获得索引 | 保持索引启用(默认行为) | m: 16 ,indexing_threshold: 20000 (默认) |
如果在摄入期间禁用了索引,则必须在上传后重新启用索引才能激活快速 HNSW 搜索。
延迟 HNSW 图构建(m: 0
)
对于密集向量,将 HNSW m
参数设置为 0
会完全禁用索引构建。向量仍将存储,但在稍后启用索引之前不会被索引。
PUT /collections/{collection_name}
{
"vectors": {
"size": 768,
"distance": "Cosine"
},
"hnsw_config": {
"m": 0
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.create_collection(
collection_name="{collection_name}",
vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE),
hnsw_config=models.HnswConfigDiff(
m=0,
),
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.createCollection("{collection_name}", {
vectors: {
size: 768,
distance: "Cosine",
},
hnsw_config: {
m: 0,
},
});
use qdrant_client::qdrant::{
CreateCollectionBuilder, Distance, HnswConfigDiffBuilder, VectorParamsBuilder,
};
use qdrant_client::Qdrant;
let client = Qdrant::from_url("http://localhost:6334").build()?;
client
.create_collection(
CreateCollectionBuilder::new("{collection_name}")
.vectors_config(VectorParamsBuilder::new(768, Distance::Cosine))
.hnsw_config(HnswConfigDiffBuilder::default().m(0)),
)
.await?;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Collections.CreateCollection;
import io.qdrant.client.grpc.Collections.Distance;
import io.qdrant.client.grpc.Collections.HnswConfigDiff;
import io.qdrant.client.grpc.Collections.VectorParams;
import io.qdrant.client.grpc.Collections.VectorsConfig;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client
.createCollectionAsync(
CreateCollection.newBuilder()
.setCollectionName("{collection_name}")
.setVectorsConfig(
VectorsConfig.newBuilder()
.setParams(
VectorParams.newBuilder()
.setSize(768)
.setDistance(Distance.Cosine)
.build())
.build())
.setHnswConfig(HnswConfigDiff.newBuilder().setM(0).build())
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.CreateCollectionAsync(
collectionName: "{collection_name}",
vectorsConfig: new VectorParams { Size = 768, Distance = Distance.Cosine },
hnswConfig: new HnswConfigDiff { M = 0 }
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.CreateCollection(context.Background(), &qdrant.CreateCollection{
CollectionName: "{collection_name}",
VectorsConfig: qdrant.NewVectorsConfig(&qdrant.VectorParams{
Size: 768,
Distance: qdrant.Distance_Cosine,
}),
HnswConfig: &qdrant.HnswConfigDiff{
M: qdrant.PtrOf(uint64(0)),
},
})
摄入完成后,通过将 m
设置为您的生产值(通常为 16 或 32)来重新启用 HNSW。
PATCH /collections/{collection_name}
{
"vectors": {
"size": 768,
"distance": "Cosine"
},
"hnsw_config": {
"m": 16
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.update_collection(
collection_name="{collection_name}",
vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE),
hnsw_config=models.HnswConfigDiff(
m=16,
),
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.updateCollection("{collection_name}", {
vectors: {
size: 768,
distance: "Cosine",
},
hnsw_config: {
m: 16,
},
});
use qdrant_client::qdrant::{
UpdateCollectionBuilder, HnswConfigDiffBuilder,
};
use qdrant_client::Qdrant;
let client = Qdrant::from_url("http://localhost:6334").build()?;
client
.update_collection(
UpdateCollectionBuilder::new("{collection_name}")
.hnsw_config(HnswConfigDiffBuilder::default().m(16)),
)
.await?;
import io.qdrant.client.grpc.Collections.UpdateCollection;
import io.qdrant.client.grpc.Collections.HnswConfigDiff;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client.updateCollectionAsync(
UpdateCollection.newBuilder()
.setCollectionName("{collection_name}")
.setHnswConfig(HnswConfigDiff.newBuilder().setM(16).build())
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.UpdateCollectionAsync(
collectionName: "{collection_name}",
hnswConfig: new HnswConfigDiff { M = 16 }
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client, err := client.UpdateCollection(context.Background(), &qdrant.UpdateCollection{
CollectionName: "{collection_name}",
HnswConfig: &qdrant.HnswConfigDiff{
M: qdrant.PtrOf(uint64(16)),
},
})
完全禁用索引(indexing_threshold: 0
)
如果您正在进行大规模数据集的初始上传,您可能希望在上传期间禁用索引。这将避免对向量进行不必要的索引,这些向量将被下一批数据覆盖。
将 indexing_threshold
设置为 0
会完全禁用索引
PUT /collections/{collection_name}
{
"vectors": {
"size": 768,
"distance": "Cosine"
},
"optimizers_config": {
"indexing_threshold": 0
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.create_collection(
collection_name="{collection_name}",
vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE),
optimizers_config=models.OptimizersConfigDiff(
indexing_threshold=0,
),
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.createCollection("{collection_name}", {
vectors: {
size: 768,
distance: "Cosine",
},
optimizers_config: {
indexing_threshold: 0,
},
});
use qdrant_client::qdrant::{
OptimizersConfigDiffBuilder, UpdateCollectionBuilder,
};
use qdrant_client::Qdrant;
let client = Qdrant::from_url("http://localhost:6334").build()?;
client
.create_collection(
CreateCollectionBuilder::new("{collection_name}")
.optimizers_config(OptimizersConfigDiffBuilder::default().indexing_threshold(0)),
)
.await?;
import io.qdrant.client.grpc.Collections.CreateCollection;
import io.qdrant.client.grpc.Collections.Distance;
import io.qdrant.client.grpc.Collections.VectorParams;
import io.qdrant.client.grpc.Collections.VectorsConfig;
import io.qdrant.client.grpc.Collections.OptimizersConfigDiff;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client.createCollectionAsync(
CreateCollection.newBuilder()
.setCollectionName("{collection_name}")
.setVectorsConfig(
VectorsConfig.newBuilder()
.setParams(
VectorParams.newBuilder()
.setSize(768)
.setDistance(Distance.Cosine)
.build())
.build())
.setOptimizersConfig(
OptimizersConfigDiff.newBuilder()
.setIndexingThreshold(0)
.build())
.build()
).get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.CreateCollectionAsync(
collectionName: "{collection_name}",
vectorsConfig: new VectorParams { Size = 768, Distance = Distance.Cosine },
optimizersConfig: new OptimizersConfigDiff { IndexingThreshold = 0 }
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.CreateCollection(context.Background(), &qdrant.CreateCollection{
CollectionName: "{collection_name}",
VectorsConfig: qdrant.NewVectorsConfig(&qdrant.VectorParams{
Size: 768,
Distance: qdrant.Distance_Cosine,
}),
OptimizersConfig: &qdrant.OptimizersConfigDiff{
IndexingThreshold: qdrant.PtrOf(uint64(0)),
},
})
上传完成后,您可以通过将 indexing_threshold
设置为所需值(默认值为 20000)来启用索引
PATCH /collections/{collection_name}
{
"optimizers_config": {
"indexing_threshold": 20000
}
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.update_collection(
collection_name="{collection_name}",
optimizer_config=models.OptimizersConfigDiff(indexing_threshold=20000),
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.updateCollection("{collection_name}", {
optimizers_config: {
indexing_threshold: 20000,
},
});
use qdrant_client::qdrant::{
OptimizersConfigDiffBuilder, UpdateCollectionBuilder,
};
use qdrant_client::Qdrant;
let client = Qdrant::from_url("http://localhost:6334").build()?;
client
.update_collection(
UpdateCollectionBuilder::new("{collection_name}")
.optimizers_config(OptimizersConfigDiffBuilder::default().indexing_threshold(20000)),
)
.await?;
import io.qdrant.client.grpc.Collections.UpdateCollection;
import io.qdrant.client.grpc.Collections.OptimizersConfigDiff;
client.updateCollectionAsync(
UpdateCollection.newBuilder()
.setCollectionName("{collection_name}")
.setOptimizersConfig(
OptimizersConfigDiff.newBuilder()
.setIndexingThreshold(20000)
.build()
)
.build()
).get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.UpdateCollectionAsync(
collectionName: "{collection_name}",
optimizersConfig: new OptimizersConfigDiff { IndexingThreshold = 20000 }
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.UpdateCollection(context.Background(), &qdrant.UpdateCollection{
CollectionName: "{collection_name}",
OptimizersConfig: &qdrant.OptimizersConfigDiff{
IndexingThreshold: qdrant.PtrOf(uint64(20000)),
},
})
此时,Qdrant 将在后台开始索引新的和之前未索引的段。
直接上传到磁盘
当您上传的向量无法全部放入 RAM 时,您可能希望使用memmap支持。
在集合创建期间,可以使用 on_disk
参数为每个向量启用 memmap。这将始终直接将向量数据存储在磁盘上。它适用于摄入大量数据,这对于亿级规模基准测试至关重要。
在这种情况下不建议使用 memmap_threshold
。它将要求优化器不断地将内存中的段转换为磁盘上的 memmap 段。这个过程比较慢,并且在摄入大量数据时,优化器可能会成为瓶颈。
有关此内容的更多信息,请参阅配置 Memmap 存储。
并行上传到多个分片
在 Qdrant 中,每个集合被分割成多个分片。每个分片都有一个独立的预写日志(WAL),负责操作的排序。通过创建多个分片,您可以并行上传大规模数据集。每台机器 2 到 4 个分片是合理的数量。
PUT /collections/{collection_name}
{
"vectors": {
"size": 768,
"distance": "Cosine"
},
"shard_number": 2
}
from qdrant_client import QdrantClient, models
client = QdrantClient(url="http://localhost:6333")
client.create_collection(
collection_name="{collection_name}",
vectors_config=models.VectorParams(size=768, distance=models.Distance.COSINE),
shard_number=2,
)
import { QdrantClient } from "@qdrant/js-client-rest";
const client = new QdrantClient({ host: "localhost", port: 6333 });
client.createCollection("{collection_name}", {
vectors: {
size: 768,
distance: "Cosine",
},
shard_number: 2,
});
use qdrant_client::qdrant::{CreateCollectionBuilder, Distance, VectorParamsBuilder};
use qdrant_client::Qdrant;
let client = Qdrant::from_url("http://localhost:6334").build()?;
client
.create_collection(
CreateCollectionBuilder::new("{collection_name}")
.vectors_config(VectorParamsBuilder::new(768, Distance::Cosine))
.shard_number(2),
)
.await?;
import io.qdrant.client.QdrantClient;
import io.qdrant.client.QdrantGrpcClient;
import io.qdrant.client.grpc.Collections.CreateCollection;
import io.qdrant.client.grpc.Collections.Distance;
import io.qdrant.client.grpc.Collections.VectorParams;
import io.qdrant.client.grpc.Collections.VectorsConfig;
QdrantClient client =
new QdrantClient(QdrantGrpcClient.newBuilder("localhost", 6334, false).build());
client
.createCollectionAsync(
CreateCollection.newBuilder()
.setCollectionName("{collection_name}")
.setVectorsConfig(
VectorsConfig.newBuilder()
.setParams(
VectorParams.newBuilder()
.setSize(768)
.setDistance(Distance.Cosine)
.build())
.build())
.setShardNumber(2)
.build())
.get();
using Qdrant.Client;
using Qdrant.Client.Grpc;
var client = new QdrantClient("localhost", 6334);
await client.CreateCollectionAsync(
collectionName: "{collection_name}",
vectorsConfig: new VectorParams { Size = 768, Distance = Distance.Cosine },
shardNumber: 2
);
import (
"context"
"github.com/qdrant/go-client/qdrant"
)
client, err := qdrant.NewClient(&qdrant.Config{
Host: "localhost",
Port: 6334,
})
client.CreateCollection(context.Background(), &qdrant.CreateCollection{
CollectionName: "{collection_name}",
VectorsConfig: qdrant.NewVectorsConfig(&qdrant.VectorParams{
Size: 768,
Distance: qdrant.Distance_Cosine,
}),
ShardNumber: qdrant.PtrOf(uint32(2)),
})